Systems for Algorithmic Trading in FPGA

Milan Dvorak
dvorak@invea.com
Petr Kastovsky
kastovsky@invea.com
• Czech university spin-off company
• FPGA team formed in 2000
• Company established in 2007
• 40+ employees
• Key focus
 ▪ Hardware acceleration
 ▪ Electronic trading
 ▪ FPGA solutions
 ▪ Network monitoring and security
Motivation

• **Evolution of trading**
 - Open out cry
 - Electronic
 - High frequency
 - Ultra low latency
 - First come first serve

• **High Performance Computing**
 - Derivatives trading
 - Monte Carlo simulations
FPGA technology

- **Programmable hardware**
 - Flexibility of software
 - Performance of hardware

- **Key features**
 - Field programmable
 - Massive parallelism
 - Deterministic
 - Low latency (sub us)

- **Drawbacks**
 - Hardware designer expertise required
 - Time to market longer compared to software
FPGA cards

- NIC (Network Interface Card) + FPGA chip
- Plugged in to a commodity box
- Provided as a whole solution
- 1G/10G/40G/100G interfaces
How can financial applications and trading systems benefit from the FPGA technology?
Content aware filtering

- Message Filtering
 - According to message type

- Symbol filtering
 - According to symbol ID

- Data Distribution
 - Multiple CPU cores, multiple network interfaces

- Data decoding&normalization
 - Unified message format

- Book handling
 - Convert order updates to price level updates

- Reduced CPU load on machines
Fast order execution

- Complex price computation in SW (Options pricing)
- Fast order execution engine in FPGA
 - SW feeds current desired prices to the FPGA
 - FPGA sends order as soon as matching price is on the book
- Complete tick-to-trade in hardware
- Wire-to-wire sub-microsecond latency
• Goal: evaluate all derivatives upon change in underlying price (stock → options)

• In SW – sequential task (few cpu cores)

• In FPGA – hundreds of symbols evaluated in parallel
FPGA can be used to accelerate generic computation

Monte Carlo simulation:

1. Load desired function to the FPGA
2. Let FPGA evaluate hundreds of points in parallel
3. Get the results

Parallel execution – faster than CPU

Lower power consumption
How to program the FPGA with user-defined function?
FPGA programming

• SW code – HLL (High Level Language)
 ▪ C/C++, Java, Python ...
 ▪ Flexible, easy to use
 ▪ 😊

• HW code – HDL (Hardware Description Language)
 ▪ VHDL, Verilog
 ▪ Difficult to learn, longer time-to-market
 ▪ 😞
• **New ways to work with FPGAs**

• HLS – High Level synthesis
 - Use HLL to write code for FPGA
 - Convert C/C++ to VHDL
 - Several commercial tools

• MathWorks tool chain
 - Convert your Matlab function to FPGA design
 - Simulink, Fixed-Point Designer, HDL Coder and HDL Verifier

• Complete solution with FPGA
 - FPGA is abstracted from the user
 - SW API calls to configure&use the FPGA
TradeCOPE

- All-FPGA trading solution
 - Lowest latency possible
 - Easy-to-use
- Deliverables
 - FPGA card, box
 - Software API, firmware framework
- Complete tick-to-trade processing
- User defined trading strategy
 - MathWorks tools or HLS
Summary

• FPGA
 ▪ Flexible, high performance, deterministic low latency

• Use cases of FPGA + algorithmic trading
 ▪ Content aware filtering
 ▪ Low-latency order execution
 ▪ Highly parallel symbol evaluation (options)
 ▪ Computation acceleration (Monte Carlo)

• FPGA programmability
 ▪ HLS – High level synthesis (C/C++ → FPGA)
 ▪ MathWorks (Matlab → FPGA)
 ▪ Whole solution (TradeCOPE)
INVEA-TECH a.s.
U Vodárny 2965/2
616 00 Brno, Czech Republic
www.invea.com

High-Speed Networking Technology Partner

Milan Dvořák
dvorak@invea.com