On Calibration of Stochastic and Fractional Stochastic Volatility Models

Milan Mrážek, Jan Pospíšil*, Tomáš Sobotka

Nové technologie pro informační společnost
Fakulta aplikovaných věd
Západočeská univerzita v Plzni

Moderné nástroje pre finančnú analýzu a modelovanie
Národná banka Slovenska, Bratislava

4. června 2015
We consider the risk-neutral stock price model

\[dS_t = rS_t \, dt + \sqrt{v_t} S_t \, d\tilde{W}_t^S, \]

\[dv_t = \kappa (\theta - v_t) \, dt + \sigma \sqrt{v_t} \, d\tilde{W}_t^v, \]

\[d\tilde{W}_t^S \, d\tilde{W}_t^v = \rho \, dt, \]

with initial conditions \(S_0 \geq 0 \) and \(v_0 \geq 0 \), where

- \(S_t \) is the price of the underlying asset at time \(t \),
- \(v_t \) is the instantaneous variance at time \(t \),
- \(r \) is the risk-free rate,
- \(\theta \) is the long run average price variance,
- \(\kappa \) is the rate at which \(v_t \) reverts to \(\theta \) and
- \(\sigma \) is the volatility of the volatility.

\((\tilde{W}_t^S, \tilde{W}_t^v)\) is a two-dimensional Wiener process under the risk-neutral measure \(\tilde{P} \) with instantaneous correl. \(\rho \).

European call option price $C(S, v, t)$ can be expressed as:

$$C(S, v, t) = S - Ke^{-r\tau} \frac{1}{\pi} \int_{0+i/2}^{\infty+i/2} e^{-ikX} \frac{\hat{H}(k, v, \tau)}{k^2 - ik} dk,$$

where

$$\hat{H}(k, v, \tau) = \exp \left(\frac{2\kappa\theta}{\sigma^2} \left[tg - \ln \left(\frac{1 - he^{-\xi t}}{1 - h} \right) + vg \left(\frac{1 - e^{-\xi t}}{1 - he^{-\xi t}} \right) \right] \right),$$

$X = \ln(S/K) + r\tau$

g = \frac{b - \xi}{2}, \quad h = \frac{b - \xi}{b + \xi}, \quad t = \frac{\sigma^2\tau}{2},$

$$\xi = \sqrt{b^2 + \frac{4(k^2 - ik)}{\sigma^2}},$$

$$b = \frac{2}{\sigma^2} \left(ik\rho\sigma + \kappa \right).$$
Optimization problem, nonlinear least squares:

$$\inf_\Theta G(\Theta), \quad G(\Theta) = \sum_{i=1}^{N} w_i | C_{i\Theta}(t, S_t, T_i, K_i) - C_{i}^{*}(T_i, K_i)|^2,$$

where

- N denotes the number of observed option prices,
- w_i is a weight,
- $C_{i}^{*}(T_i, K_i)$ is the market price of the call option observed at time t,
- $C_{i\Theta}$ denotes the model price computed using vector of model parameters.

For Heston SV model we have $\Theta = (\kappa, \theta, \sigma, \nu_0, \rho)$.
Considered algorithms and their implementations

We tested

- **global optimizers:**
 - in MATLAB’s Global Optimization Toolbox:
 - genetic algorithm (GA) - function `ga()`
 - simulated annealing (SA) - function `simulannealbnd()`
 - from inberg.com:
 - adaptive simulated annealing (ASA)

- **local search method (LSQ):**
 - in MATLAB’s Optimization Toolbox: function `lsqnonlin()`,
 - Gauss-Newton trust region,
 - Levenberg-Marquardt,
 - in Microsoft Excel’s solver
 - Generalized Reduced Gradient method,

- combination of both approaches, see later.
Measured errors, considered weights

Maximum absolute relative error

\[\text{MARE}(\Theta) = \max_i \frac{|C_i^\Theta - C_i^*|}{C_i^*} \]

and average of the absolute relative error

\[\text{AARE}(\Theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{|C_i^\Theta - C_i^*|}{C_i^*} \]

for \(i = 1, \ldots, N \). Let \(\delta_i > 0 \) denote the bid ask spread. We consider the following weights

- weight A: \(w_i = \frac{1}{|\delta_i|} \),
- weight B: \(w_i = \frac{1}{\delta_i^2} \),
- weight C: \(w_i = \frac{1}{\sqrt{\delta_i}} \).
Empirical results for Heston model on real market data

DATA:
- Market prices obtained on March 19, 2013 from Bloomberg’s Option Monitor for ODAX call options.
- We used a set of 107 options for 6 maturities.
- Volatility smile and term structure for DAX call options (sourced from Bloomberg Finance L.P.):
Calibration results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Weight</th>
<th>AARE</th>
<th>MARE</th>
<th>ν_0</th>
<th>κ</th>
<th>θ</th>
<th>σ</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>A</td>
<td>1.25%</td>
<td>12.46%</td>
<td>0.02897</td>
<td>0.68921</td>
<td>0.10313</td>
<td>0.79492</td>
<td>-0.53769</td>
</tr>
<tr>
<td>GA</td>
<td>B</td>
<td>2.10%</td>
<td>13.80%</td>
<td>0.03073</td>
<td>0.06405</td>
<td>0.94533</td>
<td>0.91248</td>
<td>-0.53915</td>
</tr>
<tr>
<td>GA</td>
<td>C</td>
<td>1.70%</td>
<td>18.35%</td>
<td>0.03300</td>
<td>0.83930</td>
<td>0.10826</td>
<td>1.14674</td>
<td>-0.49923</td>
</tr>
<tr>
<td>ASA</td>
<td>A</td>
<td>2.26%</td>
<td>19.51%</td>
<td>0.03876</td>
<td>0.80811</td>
<td>0.13781</td>
<td>1.63697</td>
<td>-0.46680</td>
</tr>
<tr>
<td>ASA</td>
<td>B</td>
<td>2.62%</td>
<td>28.65%</td>
<td>0.03721</td>
<td>1.45765</td>
<td>0.09663</td>
<td>1.86941</td>
<td>-0.37053</td>
</tr>
<tr>
<td>ASA</td>
<td>C</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09508</td>
<td>1.44249</td>
<td>-0.49063</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>A</td>
<td>2.26%</td>
<td>19.51%</td>
<td>0.03876</td>
<td>0.80811</td>
<td>0.13781</td>
<td>1.63697</td>
<td>-0.46680</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>B</td>
<td>2.62%</td>
<td>28.65%</td>
<td>0.03721</td>
<td>1.45765</td>
<td>0.09663</td>
<td>1.86941</td>
<td>-0.37053</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>C</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09508</td>
<td>1.44249</td>
<td>-0.49063</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Weight</th>
<th>AARE</th>
<th>MARE</th>
<th>ν_0</th>
<th>κ</th>
<th>θ</th>
<th>σ</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA+Excel</td>
<td>A</td>
<td>1.25%</td>
<td>12.46%</td>
<td>0.02897</td>
<td>0.68922</td>
<td>0.10314</td>
<td>0.79490</td>
<td>-0.53769</td>
</tr>
<tr>
<td>GA+Excel</td>
<td>B</td>
<td>1.25%</td>
<td>12.46%</td>
<td>0.02896</td>
<td>0.68921</td>
<td>0.10314</td>
<td>0.79492</td>
<td>-0.53769</td>
</tr>
<tr>
<td>GA+Excel</td>
<td>C</td>
<td>1.25%</td>
<td>12.66%</td>
<td>0.02903</td>
<td>0.68932</td>
<td>0.10294</td>
<td>0.79464</td>
<td>-0.53763</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>A</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09509</td>
<td>1.44248</td>
<td>-0.49062</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>B</td>
<td>1.78%</td>
<td>18.18%</td>
<td>0.03439</td>
<td>1.22399</td>
<td>0.09740</td>
<td>1.43711</td>
<td>-0.49115</td>
</tr>
<tr>
<td>ASA+Excel</td>
<td>C</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09509</td>
<td>1.44248</td>
<td>-0.49062</td>
</tr>
<tr>
<td>GA+LSQ</td>
<td>A</td>
<td>0.67%</td>
<td>3.07%</td>
<td>0.02491</td>
<td>0.82270</td>
<td>0.07597</td>
<td>0.48665</td>
<td>-0.67099</td>
</tr>
<tr>
<td>GA+LSQ</td>
<td>B</td>
<td>0.65%</td>
<td>2.22%</td>
<td>0.02497</td>
<td>1.22136</td>
<td>0.06442</td>
<td>0.55993</td>
<td>-0.66255</td>
</tr>
<tr>
<td>GA+LSQ</td>
<td>C</td>
<td>0.68%</td>
<td>3.66%</td>
<td>0.02486</td>
<td>0.75195</td>
<td>0.07886</td>
<td>0.46936</td>
<td>-0.67266</td>
</tr>
<tr>
<td>ASA+LSQ</td>
<td>A</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09508</td>
<td>1.44249</td>
<td>-0.49063</td>
</tr>
<tr>
<td>ASA+LSQ</td>
<td>B</td>
<td>1.71%</td>
<td>19.48%</td>
<td>0.03511</td>
<td>1.22672</td>
<td>0.09636</td>
<td>1.44194</td>
<td>-0.49089</td>
</tr>
<tr>
<td>ASA+LSQ</td>
<td>C</td>
<td>1.73%</td>
<td>19.82%</td>
<td>0.03550</td>
<td>1.22482</td>
<td>0.09508</td>
<td>1.44249</td>
<td>-0.49063</td>
</tr>
</tbody>
</table>

* initial guesses obtained by deterministic grid;
Results for pair GA and LSQ in terms of absolute relative errors:
Results for pair GA and LSQ in terms of absolute relative errors:
We consider the risk-neutral stock price model with approximative fractional stochastic volatility (FSV)

\[dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^S + Y_t S_t dN_t, \]

\[dv_t = -\kappa (v_t - \bar{v}) dt + \xi v_t dB_t^H, \]

where

- \(\kappa \) is a mean-reversion rate,
- \(\bar{v} \) stands for an average volatility level,
- \(\xi \) is so-called volatility of volatility,
- \((N_t)_{t \geq 0} \) is a Poisson process,
- \(Y_t \) denotes an amplitude of a jump at \(t \),
- \((W_t^S)_{t \geq 0} \) is a standard Wiener process,
- \((B_t^H)_{t \geq 0} \) is an approximative fractional process.

Approximative fractional process

Let

\[B_t^H = \int_0^t (t - s + \varepsilon)^H - 1/2 dW_s, \]

where

- \(H \) is a long-memory Hurst parameter in general \(H \in [0, 1] \),
- \(\varepsilon \) is a non-negative approximation factor,
- \((W_t)_{t \geq 0}\) represents a standard Wiener process.

Long-range dependence of volatility if \(H \in (0.5, 1] \).
If \(\varepsilon > 0 \) then \(B_t^H \) is a semi-martingale.
Semi-closed form solution of the FSV model

European call option price $V(\tau, K)$ can be expressed as:

$$V(\tau, K) = e^{x_t} P_1(x_t, \nu_t, \tau) - e^{-r\tau} K P_2(x_t, \nu_t, \tau),$$

where for $n = 1, 2$

$$P_n = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \Re \left[\frac{e^{i\phi \ln(K)} f_n}{i\phi} \right] d\phi,$$

$$f_n = \exp \left\{ C_n(\tau, \phi) + D_n(\tau, \phi) \nu_0 + i\phi \ln(S_t) + \psi(\phi) \tau \right\},$$

$$C_n(\tau, \phi) = r\phi i\tau + \theta Y_n \tau - \frac{2\theta}{\beta^2} \ln \left(\frac{1 - gn e^{d_n \tau}}{1 - gn} \right),$$

$$D_n(\tau, \phi) = Y_n \left(\frac{1 - e^{d_n \tau}}{1 - gn e^{d_n \tau}} \right),$$

where all the unexplained terms follow...
For \(n = 1, 2 \)

\[
\psi = -\lambda i \phi \left(e^{\alpha J + \gamma_j^2/2} - 1 \right) + \lambda \left(e^{i \phi \alpha J - \phi^2 \gamma_j^2/2} - 1 \right)
\]

\[
Y_n = \frac{b_n - \rho \beta \phi i + d_n}{\beta^2}
\]

\[
g_n = \frac{b_n - \rho \beta \phi i + d_n}{b_n - \rho \beta \phi i - d_n},
\]

\[
d_n = \sqrt{(\rho \beta \phi i - b_n)^2 - \beta^2 (2u_n \phi i - \phi^2)},
\]

\[
\beta = \xi \varepsilon^{H-1/2} \sqrt{v_t}, \quad u_1 = 1/2, \quad u_2 = -1/2, \quad \theta = \kappa \bar{v},
\]

\[
b_1 = \kappa - (H - 1/2) \xi \varphi_t - \rho \beta,
\]

\[
b_2 = \kappa - (H - 1/2) \xi \varphi_t.
\]

Rather complicated formula, but still 'Heston-like'.
The vector of parameters to be optimized will be
\[\Theta = (v_0, \kappa, \bar{v}, \xi, \rho, \lambda, \alpha_J, \gamma_J, H), \]
where

<table>
<thead>
<tr>
<th>(v_0)</th>
<th>(\kappa)</th>
<th>(\bar{v})</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial volatility</td>
<td>mean reversion rate</td>
<td>average volatility</td>
</tr>
<tr>
<td>(\xi)</td>
<td>(\rho)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>volatility of volatility</td>
<td>correlation coef.</td>
<td>Poisson hazard rate</td>
</tr>
<tr>
<td>(\alpha_J)</td>
<td>(\gamma_J)</td>
<td>(H)</td>
</tr>
<tr>
<td>expected jump size</td>
<td>variance of jump sizes</td>
<td>Hurst parameter</td>
</tr>
</tbody>
</table>
Empirical results for the FSV model on real market data

DATA:
- Market prices obtained on January 8, 2014 from Bloomberg’s Option Monitor for British FTSE 100 stock index call options.
- We used a set of 82 options for 6 maturities.
Calibration results

<table>
<thead>
<tr>
<th>Model</th>
<th>Weights</th>
<th>Algorithm</th>
<th>AARE [%]</th>
<th>MARE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSV model</td>
<td>A</td>
<td>GA+LSQ</td>
<td>2.34</td>
<td>20.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>2.34</td>
<td>20.53</td>
</tr>
<tr>
<td>Heston model</td>
<td>A</td>
<td>GA+LSQ</td>
<td>3.36</td>
<td>19.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>4.43</td>
<td>29.34</td>
</tr>
<tr>
<td>FSV model</td>
<td>B</td>
<td>GA+LSQ</td>
<td>2.33</td>
<td>20.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>2.34</td>
<td>20.53</td>
</tr>
<tr>
<td>Heston model</td>
<td>B</td>
<td>GA+LSQ</td>
<td>5.07</td>
<td>32.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>4.15</td>
<td>23.33</td>
</tr>
<tr>
<td>FSV model</td>
<td>C</td>
<td>GA+LSQ</td>
<td>2.34</td>
<td>20.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>2.34</td>
<td>20.53</td>
</tr>
<tr>
<td>Heston model</td>
<td>C</td>
<td>GA+LSQ</td>
<td>3.35</td>
<td>18.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA+LSQ</td>
<td>3.52</td>
<td>19.93</td>
</tr>
</tbody>
</table>

The best calibration result in terms of AARE.
Results for pair GA and LSQ in terms of absolute relative errors for weights B:

FSV model

Heston model
Conclusion

Heston model:

- optimization problem is non-convex and may contain many local minima,
- local search method without a good initial guess may fail to achieve satisfactory results,
- we set a fine deterministic grid for initial starting points,
- best result of a trust region minimizer for these points (AARE=0.58%, MARE=3.10%) is taken as a reference point for comparison of less heuristic and more efficient approaches,
- with GA+LSQ we were able to get close (AARE=0.65%, MARE=2.22%).

Conclusion continued

FSV model:
- a new 'Heston-like' semi-closed formula,
- first empirical calibration results,
- in some aspects better results than with Heston model.

Further issues:
- optimization techniques:
 - performance and accuracy improvements of Gauss-Newton trust-region methods,
 - variable metric methods for nonlinear least squares,
 - fine tuning the global optimizers.
- presented approaches:
 - calibration results with respect to exotic derivatives,
 - hedging under the FSV model,
 - large-scale parallel calibration of the models.