Modelovanie elektrickej aktivity srdca v prostredí COMSOL Multiphysics

(Modeling of the electrical activity of the heart in COMSOL Multiphysics environment)

Elena Cocherová
PRESENTATION OUTLINE

• Electrical excitation - action potential (AP) in the heart

• Models of AP of atrial and ventricular heart cells

• Simplified model of heart cells (modified FitzHugh-Nagumo model) – in Matlab

• Modeling of AP propagation – monodomain model

• Modeling of AP propagation - in COMSOL Multiphysics
Electrical excitation of the heart

Electrical excitation (in form of action potential) is spreading in the heart through various types of heart cells [1] – [3]:

- **SA nodal** – origin of excitation
- Atrial
- AV nodal
- **Bundle of His**
- **Bundle branches**
- **Purkinje fibers**
- Endocardial
- **Mid-myocardial**
- Epicardial

Action potential shape [2] is different for different types of heart cells
Action potential phases in typical cardiomyocyte (cardiac muscle cell)
Various types of cardiomyocyte action potential shapes

Various types of action potential shapes in ventricular cardiomyocyte [4], [5]

Luo – Rudy II model (1994) [7]

Winslow model (1999) [8]

Hund-Rudy dynamic model (2004) [130]

O'Hara-Rudy model (2011) - enables to model [4], [5]:
 - epicardial
 - endocardial
 - mid-myocardial cells

Courtemanche-Ramirez-Nattel model (1998) [12], [13]
enables to control AP morphology (three main morphological types)
- 21 ordinary differential equations (ODE)

Simplified model of heart cells

enables to control AP shape
- 2 ordinary differential equations
Courtemanche-Ramirez-Nattel model of human atrial cell [12]
Courtemanche-Ramirez-Nattel membrane model of the human atrial cell

\[
\frac{dV}{dt} \cdot C_m + I_{ion} = I_{st} \quad \Rightarrow \quad dV/dt = \left(-I_{ion} + I_{st}\right)/C_m
\]

\[I_{ion} = I_{Na} + I_{Ca,L} + I_{to} + I_{Kr} + I_{Ks} + I_{K1} + I_{Kur} + I_{NaK} + I_{NaCa} + I_{Ca,p} + I_{Ca,b} + I_{Na,b}\]

where e.g.:

\[I_{Na} = G_{Na} \ m^3 \ h \ (V - V_{Na})\]

21 ordinary differential equations (ODE)

75 algebraic equations

\[
\frac{dV}{dt} = -k \, c_1 (V_m - B) \left(-\frac{(V_m - B)}{A} + a \right) \left(-\frac{(V_m - B)}{A} + 1 \right) - k \, c_2 R (V_m - B) \\
\frac{dR}{dt} = k \, e \left(\frac{(V_m - B)}{A} - R \right)
\]

Where \(V_m \) is the membrane potential,
\(R \) is the recovery variable
\(a \) is relating to the excitation threshold
\(e \) is relating to the excitability
\(A \) is the action potential amplitude
\(B \) is the resting membrane potential and
\(c_1, c_2, \) and \(k \) are membrane-specific parameters.
FitzHugh-Nagumo model – simulation in Matlab

Influence of membrane parameters on:
- action potential duration (APD)

Influence of membrane parameter “e” on APD [20].
FitzHugh-Nagumo model – simulation in Matlab

Influence of membrane parameters on:
- action potential amplitude (APA)

Influence of membrane parameter “A” on AP amplitude [20].
Modeling of propagation of electrical activation using monodomain model

- monodomain model [21], [22] with incorporated modified FitzHugh-Nagumo equations [18] – [20], [23]

\[
\frac{\partial V_m}{\partial t} = \frac{1}{\beta C_m} \{ \nabla \cdot (\sigma \nabla V_m) - \beta (I_{ion} - I_s) \}
\]

where

- \(V_m \) is the membrane potential,
- \(\beta \) is the membrane surface-to-volume ratio,
- \(C_m \) is the membrane capacitance per unit area,
- \(\sigma \) is the tissue conductivity,
- \(I_{ion} \) is the ionic transmembrane current density per unit area and
- \(I_s \) is the stimulation current density per unit area.

\[D = \frac{\sigma}{\beta C_m} \]
Simulation parameters

- of monodomain model with modified FitzHugh-Nagumo equations:

\[
\begin{align*}
 a &= 0.13 & \text{- relating to the excitation threshold} \\
 e &= 0.0132 & \text{- relating to the excitability} \\
 A &= 0.120 \text{ V} & \text{- the action potential amplitude} \\
 B &= -0.085 \text{ V} & \text{- the resting membrane potential} \\
 c_1 &= 2.6 & \text{- membrane-specific parameter} \\
 c_2 &= 1 & \text{- membrane-specific parameter} \\
 k &= 1000 \text{ s}^{-1} & \text{- membrane-specific parameter} \\
 D &= 0.0005 \text{ m}^2/\text{s} & \text{- diffusivity}
\end{align*}
\]
Modeling of **propagation** of electrical activation in COMSOL Multiphysics

- monodomain model for AP propagation in the heart is:

\[
\frac{\partial V_m}{\partial t} = \frac{1}{\beta C_m} \{\nabla \cdot (\sigma \nabla V_m) - \beta(I_{ion} - I_s)\}
\]

- this PDE (partial differential equation) is numerically solved in COMSOL Multiphysics

- detailed description how realize similar example for heart of ellipsoidal shape in COMSOL Multiphysics is in [23]:

Select Physics:
→ Δu Mathematics
→ Δu PDE Interfaces
→ Δu General Form PDE (g)
Mathematical description of monodomain model:

\[\frac{\partial V_m}{\partial t} = \nabla \cdot \left(\frac{1}{\beta C_m} \sigma \nabla V_m \right) - \frac{1}{C_m} (I_{ion} - I_s) \]

where: \(u \rightarrow V_m \)

\[e_a = 0 \]
\[d_a = 1 \]

\[i_{ion} = \frac{I_{ion}}{C_m} \]
Modeling geometry of heart wall

whole heart as a hollow sphere: \rightarrow \text{part of heart wall:} \rightarrow \text{approximate part of heart wall of box (“SLAB”) shape:}

the SLAB model of wall that is used for the following simulation
The SLAB model of the heart wall covered with mesh (predefined „Fine“ mesh). The stimulated area is a cylinder with $r = 1$ mm radius situated in the middle of the slab model.
Meshing of the model

More dense meshing of the SLAB near the boundary of stimulated area of $r = 1$ mm radius (green) is performed with two manually added boundary mesh layers from both sides.
Distribution of membrane potential $[V]$ in the SLAB model at 0.006 s and 0.008 s after stimulation onset ($r = 1$ mm, stimulation duration $T_s = 0.002$ s, amplitude of stimulation current $i_s = 100$ A/F). Activated area is shown in red, resting area in blue.
Distribution of membrane potential [V] (action potential) in the slab model in point \(x = 1.5\) mm, \(y = 0\) mm, \(z = 2\) mm \((T_s = 0.002\) s, \(i_s = 100\) A/F).
Distribution of I_{ion} normalized current [A/F] in the slab model in point $x = 1.5$ mm, $y = 0$ mm, $z = 2$ mm ($T_s = 0.002$ s, $i_s = 100$ A/F). First negative current causes depolarization of membrane (AP onset), positive peak of current causes membrane repolarization (terminal phase of repolarization).
Simulation of electrical activity (AP) of heart cell using FitzHugh-Nagumo equations
 - ordinary differential equations (ODE)
 - in Matlab.

Simulation of AP propagation in heart tissue using monodomain model with FitzHugh-Nagumo equations
 - partial differential equations (PDE)
 - in Comsol Multiphysics.
THANK YOU FOR YOUR ATTENTION!
References

