

Project No: CZ.02.2.69/0.0/0.0/18_070/0010457 Mezinárodní mobility výzkumných pracovníků MSCA-IF II na ČVUT v Praze Multi-scale Modelling of Elastocaloric Materials for Integrated Cooling

Využití piezomagnetického a elastokalorického jevu pro chlazení v pevné fázi

Jan Zemen

Konference COMSOL Multiphysics 2021 Vinařství U Kapličky, Zaječí 28.5.2021

Katedra elektrotechnologie, ČVUT, FEL

Photovoltaic systems

- Diagnostics of PV cells (cell parameters, LBIV, LBIC,...)
- Thermographic measurement
- Flash test (PASAN)
- PV modules I-V characteristic measurement
- Temperature measurement of PV modules
- Sun irradiation measurement
- Electroluminescence measurement

Conductive joining – soldering or electrically conductive adhesives (ECAs)

- Printed circuit board diagnostics
- Diagnostics of voids in soldered joints, intermetallic layers, whisker and dendritic growth
- Soldering on uncommon substrates: glass, ceramics, silicon, etc.

Outline

- Piezomagnetický jev
 - mikroskopický původ jevu linearní závislost magnetizace na strainu
 - FEM model využití výstupů mikroskopického modelu (SDFT)
- Elastokalorický jev
 - mikroskopický původ jevu uvolňování latentního tepla
 - FEM model a nutné aproximace
- Shrnutí

Canted triangular antiferromagnetic structure of Mn₃XN

J. Low Power Electron. Appl. 8, no. 4: 44. https://doi.org/10.3390/jlpea8040044

Ni, Pt, Ir, Ga, In, Sn Mn N

Piezomagnetic effect in Mn₃GaN - P. Lukashev et al., PRB (2008)

Modeling of piezomagnetism from first principles (SDFT)

Comsol model input: Biaxial strain ~ 1% results in Net magnetic field ~ 1 mT

J. Zemen, Phys. Rev. B (2017)

Piezomagnetic effect in Mn₃NiN on different substrates

Giant Piezomagnetism in Mn₃NiN

David Boldrin, Andrei P. Mihai, Bin Zou, Jan Zemen, Ryan Thompson, Ecaterina Ware, Bogdan V. Neamtu, Luis Ghivelder, Bryan Esser, David W. McComb, Peter Petrov, and Lesley F. Cohen

ACS Applied Materials & Interfaces 2018

10 (22), 18863-18868 DOI: 10.1021/acsami.8b03112

Device simulated in Comsol

.

Meshing

Arrow Volume: Magnetic flux density (spatial frame) Slice: Magnetic flux density norm (mT)

More realistic design with time dependence

 External Strain 					1			an1(x)		
Strain input:					0.8-					
Strain tensor 🔹					0.4		/		\ \	
Strain tensor:					0.2-					
ϵ_{ext}	User defined 🔹				-0.2					
	-0.001*an1(t[1/s])	0	0		-0.4 -					
	0	-0.001*an1(t[1/s])	0	1	-0.8-					
	0	0	0		-1		_			
	z			5 μm		10	-1 -1	2 0 μm -1		
	У_ 🖣	_X								

Outline

- Piezomagnetický jev
 - mikroskopický původ jevu linearní závislost magnetizace na strainu
 - FEM model využití výstupů mikroskopického modelu (SDFT)
- Elastokalorický jev
 - mikroskopický původ jevu uvolňování latentního tepla
 - FEM model a nutné aproximace
- Shrnutí

Solid state cooling

Figure 1. Cooling cycles. (a) The conventional vapor compression cycle uses a liquid–gas phase transition. **(b)** Caloric-material cooling cycles use magnetic (*H*), electric (*E*), or stress (σ) fields to reversibly change the entropy (shown as the vector arrays in gray, red, and blue) of the respective refrigerant material. **(c)** This temperature–state diagram shows ferroic cooling cycles that utilize a phase transition.

Ichiro Takeuchi, and Karl Sandeman

Citation: Physics Today **68**, 12, 48 (2015); View online: https://doi.org/10.1063/PT.3.3022

Temperature-strain phase diagram

Elastocaloric cooling cycle – an alternative to magnetocaloric cooling (Rare earth free, driven by a piezo-stressor)

J.Zemen, Phys. Rev. B, 2017

Comparison to other solid-state cooling mechanisms (MagnetoCaloric, ElectroCaloric, mechanoCaloric)

S. Crossley, N. D. Mathur, and X. Moya, AIP Advances 5, 067153 (2015)

Heat source releasing the latent heat (instead of temperature dependent heat capacity)

QL ~ latent heat released or absorbed at phase transition

Stressor is activated locally (not along the whole bar as in previous case)

Summary

- Piezomagnetický jev
 - Magnetization control
 - MRAM

- Elastokalorický jev
 - Phase transition control
 - Solid state cooling

Díky za pozornost

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

