

Heat Generation in MRE under dynamic loading.

Name: Ing. Mohammad Hdaib. Supervisors: Doc. Iva Petrikova. Prof. Bohdana Marvalova.

Experimental part: Dynamic Load.

Dynamic tests were performed at different strain amplitudes (SA), pre-strains (PS) and frequencies (F) according to the shown groups for two hours.

Experimental part: Results.

Dissipated energy is measured from stress strain hysteresis loops (J/m^3) .

$$Q_{diss} = \int_{0}^{\infty} \sigma(t)\dot{\varepsilon}(t)dt$$

- Sample Surface Temperature was measured by using of infrared Camera.
- Sample Internal Temperature was measured by thermocouple.
- Conversion ratios were calculated by using the measured temperature field, at each testing case. According to the following equation:

$$\eta \dot{q}_{diss} = \frac{\rho C_p V \Delta T}{t} + 2 \frac{T_s - T_\infty}{R_t} + A \left(h_a (T_s - T_\infty) + \delta \gamma (T_s^4 - T_\infty^4) \right)$$

Where, η is the conversion ratio and represents the part of dissipated power which transferred to heat. And \dot{q}_{diss} is the total dissipated power in (*W*).

Simulation: Geometry, Boundary Conditions and parameters.

Temperature was compared with experiment at points 1 and 2.

Material properties:

material	Emissivit (δ)	Conductivity (κ) $\left(\frac{W}{m.K}\right)$	Specific heat (C_p) $\left(\frac{J}{kg.K}\right)$
MRE	0.95	0.775	585
steel	0.22 [1]	22 [2]	475 [2]
Teflon	0.85 [1]	0.24 [2]	1050 [2]

Simulation: variables and functions.

Simulation: Heat transfer in solids.

Solid (Sample) Þ Initial Values 1 Axial Symmetry 1 Thermal Insulation 1 Solid (Teflon) Solid (Steel) Heat Source (Q_int) Heat Flux (h_cylinder1) Heat Flux (h_cylinder2) Þ Heat Flux (h_lower1) \triangleright Heat Flux (h_lower2) Heat Flux (h_upper1) Heat Flux (h_upper2)

Heat Transfer in Solids (ht)

.

Coefficient:	Boundary No.
h_cylinder1	17, 19
h_cylinder2	27, 28
h_lower1	14,23
h_lower2	20
h_upper1	16, 26
h_upper2	18

• *Thermal contact resistance* is ignored as the Teflon surface is soft and in pressure contact with steel and MRE [1].

Simulation: Surface to surface radiation.

Radiation between MRE sample and Teflon platens was proved to be significant by using the following equation to calculate the view factor between them:

Therefore, a Surface to surface Radiation physics was used to calculate both radiations:

- 1. To ambient.
- 2. Between surfaces.
- A Krimes Surface-to-Surface Radiation (rad)
 - 👂 ⊟ Diffuse Surface 1
 - 👂 ⊟ Initial Values 1
 - 👂 📇 Axial Symmetry 1
 - Diffuse Surface (MRE)
 - Diffuse Surface (Teflon)
 - Diffuse Surface (Steel grips)
 - Opacity 1

Simulation: Mesh.

Results: At variable Strain Amplitudes (Group1):

Results: At variable Pre-strains (Group2):

Results: At variable Frequencies (Group3):

Surface temperat

Results: Temperature Distribution. At F = 40Hz, PS = 20%, SA = 5% and time = (5 to 120)min.

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education - project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No.CZ.02.1.01/0.0/0.0/16_019/0000843).

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

MINISTRY OF EDUCATION, YOUTH AND SPORTS References:

[1]: Fundamentals of Heat and Mass Transfer, FRANK P. INCROPERA.

[2]: COMSOL Multiphysics 5.4 library.

Thanks for your attention.