Equation-Based Modeling

Agenda

- Equation-based modeling
 - What it is
 - When to use it
- Demo: modeling the efficiency of a mosquito trap
- Interfaces for setting up your own equations
- Q&A

COMSOL MULTIPHYSICS®

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
- Mixer Module
- Polymer Flow Module
- Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
- Pipe Flow Module
- Molecular Flow Module
- Metal Processing Module
- Heat Transfer Module

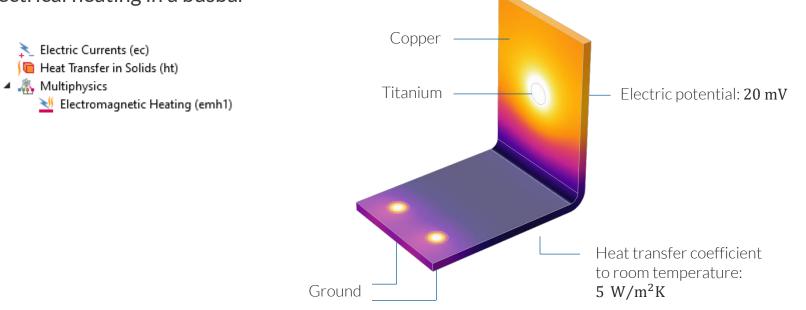
STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
 - Fatigue Module
- Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

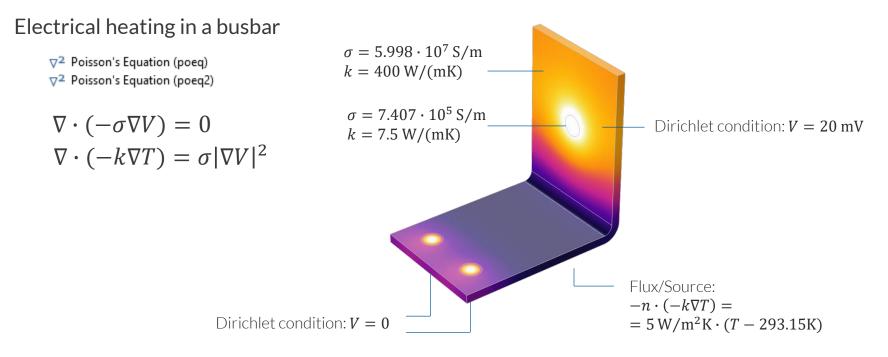
CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
- Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

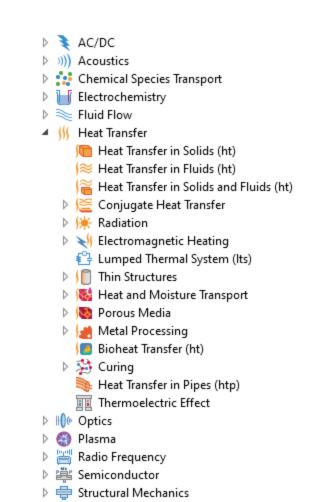

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

INTERFACING


- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS[®]
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC[®] Creo[®] Parametric[™]
- LiveLink[™] for PTC[®] Pro/ENGINEER[®]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

EXAMPLE Modeling with Physics Interfaces

Electrical heating in a busbar



EXAMPLE Modeling with Mathematics Interfaces

Why Use the Physics Interfaces?

- Pick and choose from >100 physics interfaces covering most scenarios
 - No need to enter the equation
 - Boundary conditions, solver settings, stabilization, variables, plots, etc., for free
- Even if your physics is different, the equation could be the same
 - May be more convenient to adopt or adapt an existing interface than to start from scratch

Why Use the Mathematics Interfaces?

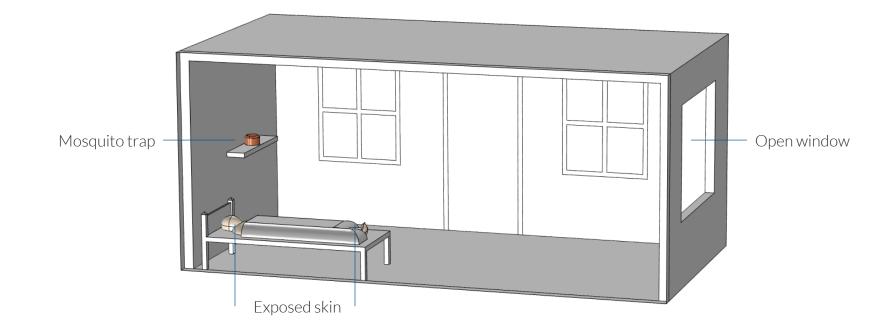
- Extend the functionality of the physics interfaces
 - Constraints
 - Control systems
 - Damage integrals
 - Optimization (with the Optimization Module)
 - Etc.
- Set up your own custom equations
 - Might not resemble existing physics interfaces or even relate to physics

▲ Δu Mathematics
▷ Δu PDE Interfaces
▷ dt ODE and DAE Interfaces
▷ Ø Optimization and Sensitivity
▷ ∇² Classical PDEs
▷ Moving Interface
▷ Ø Deformed Mesh
₩ Wall Distance (wd)
※ Mathematical Particle Tracing (pt)
© Curvilinear Coordinates (cc)

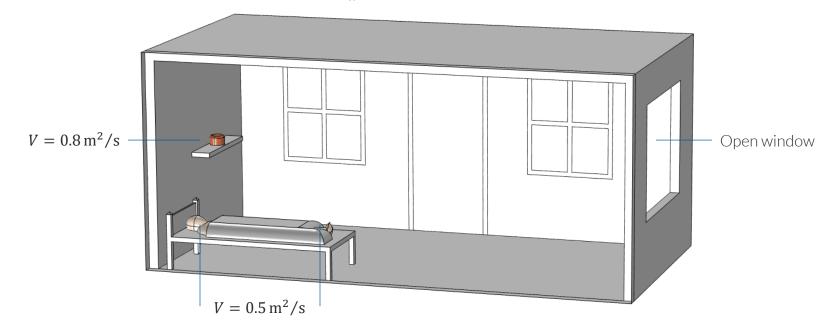
 Absent wind or anything that attracts a mosquito — let us approximate its motion as a 3D random walk

$$\boldsymbol{x_0}(t) = \sum_{n=1}^{t/\Delta t} \boldsymbol{v}_n \Delta t$$

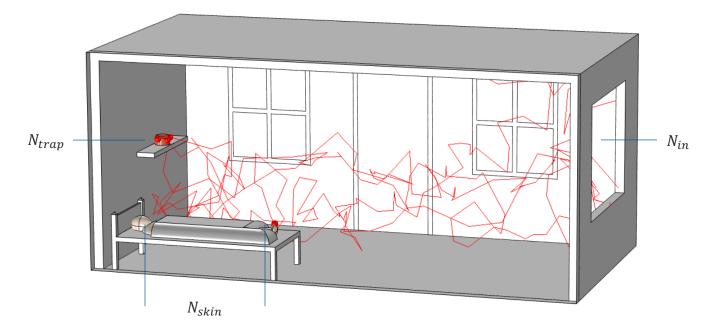
with v_n normally distributed around 0


 Introduce an attractor concentration, c_a, and add a tendency to follow its gradient

$$\mathbf{x}(t) = \mathbf{x}_0(t) + k \int_0^t \nabla c_a \mathrm{d}t$$



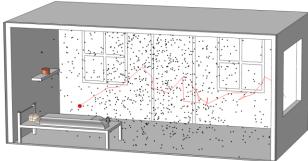
 $\boldsymbol{x}(0)$


 $\mathbf{x}(t)$

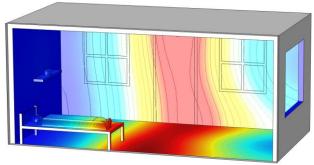
Solve $\Delta V = 0$ for velocity potential $V = kc_a$

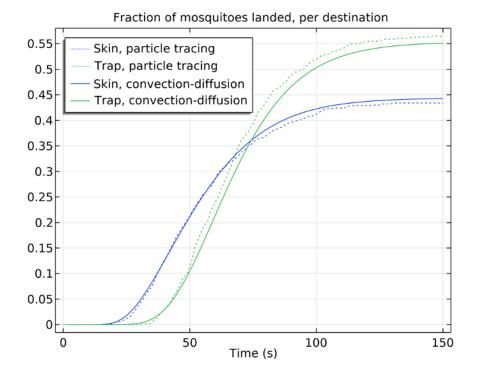
With particle tracing, count the number of mosquitoes reaching each destination

Solve an equivalent convection-diffusion equation for the mosquito concentration, c


$$\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) + \nabla V \cdot \nabla c = 0$$

The diffusion coefficient can be expressed as


$$D = \frac{\sigma^2}{6t}$$


where σ is the random walk standard deviation at the time t

- Send in a pulse of mosquitoes
- Add global equations to calculate the outflow

Particle tracing.

Convection-diffusion.

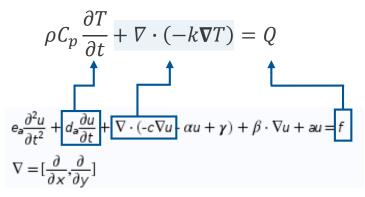
Partial Differential Equation (PDE) Interfaces

Coefficient Form PDE

Comprehensive template for a PDE

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f$$

General Form PDE


Compact template, designed for conservation laws

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \Gamma = f$$

Add Physics + Add to Component 1 + Add to Selection Δυ Mathematics Δυ PDE Interfaces Δυ Coefficient Form PDE (c) Δυ General Form PDE (g) Δυ Wave Form PDE (wahw) ∫dw Weak Form PDE (w) Δυ PDE, Boundary Elements (pdebe)

PDE Interfaces

- A physical equation can be mapped to a generic PDE by "coefficient matching"
- As an example, consider heat conduction:

This could be expressed using the Coefficient Form PDE by manually defining the coefficients

Further Resources to Get Started

comsol.com

PRODUCT DOWNLOAD

MODELS & APPLICATIONS

LEARNING CENTER

BLOG POSTS