

Simulation of Air Compressor with Hydrodynamics Bearings

Radko Kozakovič

Application Engineer HUMUSOFT s.r.o. kozakovic@humusoft.com

Agenda

- Typical Users and User Story in MBD
- Brief Introduction to Multibody Dynamics functionality
- Compressor Model
- Multiphysical Environment of Hydrodynamic Bearing
- Results

Typical Users and Industries

Users

- Interested in flexible MBD
- Interested in Multiphysics
- Existing COMSOL users
- Academics

- Industries
 - Automobile
 - Power Transmission
 - Manufacturing and Instrumentation
 - Machinery and Robotics
 - Universities

RAYCHEM RPG Optimizing Railway Equipment Designs

- Two expected changes to the Indian railway network by 2030:
- Raychem used multiphysics simulation and topology optimization to design critical components for railway overhead equipment (OHE)
- Autotensioning devices (ATD)
- Modular cantilevers (MC)

"Improving Overhead Equipment Devices for a New Era of Railway Transportation" COMSOL News 2020: Ishant Jain, Raychem RPG, India

Autotensioning devices (ATD)

Multibody Dynamics Interface

- Available under Structural Mechanics
- Supported space dimensions:
 - 3D, 2D
- Supported analysis types:
 - Stationary, Parametric
 - Time dependent
 - Eigen frequency, Frequency Domain
 - Response Spectrum, Random Vibration
- Supported element types:
 - Rigid
 - Flexible (solid, shell, composite, beam)

Flexible Multibody System

Rigid and Flexible Element

Rigid Domain

- Defined through ODE shape functions
- A very *coarse* mesh can be used
- Possible to directly enter inertial properties

Linear Elastic Material

- Defined through FE discretization and shape functions
- Isotropic or anisotropic

Stress and Equation of Motion

Common Formulation

$$\begin{split} M\ddot{\overline{q}} - A^T\overline{F}_A(\overline{q},\overline{q}\,\dot{\overline{q}}\,) + \overline{\Phi}_{\overline{q}}^T\overline{\lambda} &= \overline{0}\\ \overline{\Phi}(\overline{q},t) &= \overline{0} \end{split}$$

- M system mass matrix,
- \bar{q} the vector of coordinates q_i ,
- A^{T} tranformation matrix projecting forces into coordinates q_{i} ,
- $\bar{F}_{\!A}$ -the vector of action forces and gyroscopic components of inertial forces,
- $\overline{\Phi}$ the vector of constraint equations,
- $\overline{\varPhi}_{\overline{q}}^T$ is the gradient of constraints and
- $\bar{\lambda}$ is the vector of Lagrange multipliers.

Comsol Formulation

$$\varrho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} = \nabla \cdot (FS)^T + \boldsymbol{F}_V, \qquad F = I + \nabla \boldsymbol{u}$$

- $\varrho\text{-}\operatorname{true}$ density of the deformed material
- *F*_V-volumetric force
- S-second Piola Kirchhoff stress tensor
- I identity tensor
- abla u energetically conjugate deformation

Flexible Element: Nonlinear Materials

- Linear Elastic Material
 - Viscoelasticity
 - Plasticity
 - Creep
- Hyperelastic Material
- Nonlinear Elastic Material
- Piezoelectric Material
- Magnetostrictive Material
- Nonlinear materials are available through Solid Mechanics interface
- Nonlinear materials also require Nonlinear Structural Materials Module

Attachments

- Set of boundaries on a flexible body which is used to connect it with other bodies through joints, springs, dampers.
- Attachments can also be defined on a rigid body for an ease of modelling.
- Available in:
 - Multibody Dynamics interfaces
 - Solid Mechanics interfaces
 - Layered Shell interfaces
 - Shell interfaces
 - Beam interfaces

 Joint Joint	
Settings Attachment	* #
Label: Attachment 1	
 Boundary Selection 	
Selection: Manual	• + N
Override and Contribution	
Equation	
Connection Type	
Rigid Rigid	-
Flexible	

Joint Elasticity

Joint elasticity can be utilized:

- To model bushings
- To customize joint types
- To relieve overconstraints in a rigid body system
- To conditionally deactivate joints during the simulation

Joint Elasticity

Rigid joint	•
Rigid joint	
Elastic joint	

Joint Functionality

- Constraints
 - To limit the relative motion between the connected bodies
- Locking
 - To lock certain degrees of freedom at a joint

Spring and Damper

- To add spring and damper on the relative motion
- Prescribed Motion
 - To prescribe the relative motion as a function of time
- Applied Force and Moment
 - To apply forces and moments on the selected attachments
 - To apply forces or moments on the joint DOFs
- Friction
 - To add frictional losses on joints

From top to bottom, from left to right: Two parts, connected by a prismatic joint, Two parts, connected by a hinge joint, Joint functionality

Radial Roller Bearing

- Six rolling element bearings
 - Single or double row
- Enables modelling of bearingsupported rotating bodies
- Includes a nonlinear representation of the contact stiffness between rolling elements and inner and outer races
- Roller bearings also require Rotordynamics Module.

	Settings Radial Roller Bearing	•	۰	
	 Bearing Orientation 		^	
	Bearing axis:			
	x-axis	•		
	Local y direction:			Avai
	Automatic	•		
	 Geometric Properties 			
	Bearing type:			. /
	Cylindrical roller bearing	•		
	Single row	•		
	Number of rollers:			
dial Roller Bearing 1 {rrb1}	N _r 20	1		P00097
Equation View {info}	Roller diameter:			
		m		
	Effective length of roller:			
	Le 0	m		
	de de	m		
	p dp			
	 Clearance and Preload 			Δnn
	Radial clearance:			
	c _r 0	m		
	- Preload			
	Include preload			
	 Material Properties 			
	Young's modulus, inner race:			
	E _{in} 200[GPa]	Pa		
	Poisson's ratio, inner race:			
	ν _{in} 0.3	1		

🔺 🥽 Ra

Available Bearings

Applied Boundaries

Problem Description

Adiabatic Air Compressor

- Pressure 3 bar
- Volume 150 cm³ per piston
- Nonlinearities from:
 - Air compressing
 - HD bearing model
 - BC friction contact wall/piston
 - Flexible joints with time dependent stiffness

Left and middle: Air compressor CAD geometry

Right: Compressive forces in COMSOL Multiphysics

Compressor Model

- Friction contacts (wall/piston)
- Flexible joints (connecting rod/crankshaft, bearing house/crankshaft)
- HD bearing (right side)
- All parts are rigid except elastic crankshaft
- Virtual model of radial ball bearing —

Equation of force

Determined by thermodynamic equation for compressor

p - pressure,

- V volume of the air in the compressor,
- k Poisson constant -1.4 for air

C is constant which is given by design properties

$$F = A. C(Al - Ax)^{-\kappa} -$$

 $p.V^{\kappa} = C$

F - air force,

- A area of the piston,
- I working length of the piston
- x actual position of the piston

File Home Definitions Geometry Materials Physics Mesh Study Results Developer

11

COMSOL Multiphysics

- Domain & Global Probe Definition
- MBD Domain Definition & Constrain
- Boundary Attachment
- Elastic Hinge Joint with Friction
- Time Dependent Stiffness of Joint
- Nonlinear Force Definition
- Meshing

Multiphysical Environment of Hydrodynamic Bearings

Study Settings

- Selection of proper study type
- Time range and time step
- Physics selection

Step 1: Time Dependent {time}
 Solver Configurations
 Solution 7 (sol7) {sol7}
 Compile Equations: Time Dependent {st1}
 www Dependent Variables 1 {v1}
 Time-Dependent Solver 1 {t1}
 Direct {dDef}
 Advanced {aDef}
 Fully Coupled 1 {fc1}

Settings						- #
Time Dependent						
= Compute C Update Solution						
Label: Time Dependent						F
 Study Set 	ttings					
Time unit:	S					•
Output times:	range(0,0.00001,0.15)				s	h
Tolerance:	Physics controlled					•
🗹 Include ge	ometric nonlinearity					
Results V	/hile Solving					
 Physics a 	nd Variables Selection					5
Modify mo	odel configuration for study step					
Physics	interface	So	olve for	Equation form		
 Multibo 	Multibody Dynamics (mbd) {mbd}		\square	Automatic (Time dependent)		
O Hydrod	ynamic Bearing (hdb) {hdb}		\leq	Automatic (Time dependent)		
Multiph	ysics couplings	Solve for	r Equat	tion form		
Solid-Be	Solid-Bearing Coupling 1 (sbco1) {sbco1}		Automatic (Time dependent)			

3D Results Sets

- Volume/Surface
- Vectors
- Contours
- Multiple Color Schemes

From left to right, top to bottom: HD Oil Pressure Distr., Air Pressure Distr., von Mises Stress and Velocity Magnitude Field

0.005

0.01

5 764

1D Results Plots

Global

.....

Piston Kinetic Energy

$$E_k = \frac{1}{2}m\dot{w}^2$$

- Define your own expressions in results
- Absolutely Unit Control and Clarity

As you try out COMSOL Multiphysics[®]...

Ask any questions you may have or email support@humusoft.cz

Full support is included when you request your free trial. You also have access to tutorial models and other learning resources.

