

Modeling Electromagnetic Waves with COMSOL Multiphysics[®]

Linus Andersson COMSOL

Modeling Electromagnetic Waves with COMSOL Multiphysics[®]

COMSOL Multiphysics[®] offers functionality for modeling electromagnetic waves from low RF frequencies up to optics and beyond.

Overview of Electromagnetics Modeling

AC/DC Module

- Low frequency
- Power engineering
- Electromechanics
- Inductors, resistors, and capacitors
- Joule heating and induction heating

RF Module

- Wave propagation
- RF and mmWave engineering
- Antennas and radar cross sections (RCSs)
- Waveguides, filters, and couplers
- Microwave heating

Wave Optics Module

- Wave propagation
- Optical devices
- Optical beams and scattering
- Waveguides, gratings, and lasers
- Laser heating

Ray Optics Module

- Ray propagation
- Optically large systems
- Refraction and diffuse and specular reflection
- Cameras, lasers, and spectrometers
- STOP* analysis

Object Size Versus Wavelength

- RF and wave optics models predominantly fall in the wave regime, where the device size is about λ/100 to 10 λ.
- Devices that are smaller in terms of the wavelength can be modeled with the quasistatic formulations in the AC/DC Module.
- Devices that are large in a known direction of propagation benefit from beam envelopes, available in the Wave Optics Module.
- Systems that are large enough that diffraction can be neglected are modeled with the Ray Optics Module.

The wavelength should be considered with respect to device size.

The Electromagnetic Waves Interfaces

Frequency Domain	Beam Envelopes	Boundary Elements	Transient	Time Explicit
 Frequency domain 	 Frequency domain 	 Frequency domain 	 Time domain 	 Time domain
 Helmholtz equation 	 Helmholtz-like 	 Helmholtz equation 	 Implicit time-stepping 	 Explicit time-stepping
 General purpose on wavelength scale 	Large domains	with homogeneous materials	 General purpose on wavelength scale 	 Scales better than transient interface
 Mode analysis 	 Requires wave vector 	method	 Dispersive materials and devices 	 Scattering
 Scattering 		 No domain mesh 	 Nonlinear ontics 	
 Periodic problems 	 Gaussian beams 	 Scattering 	- Nonimear optics	

Frequency Domain Modeling

Electric field from a patch antenna. modeled with FEM and BEM.

A 64 x 64 Butler matrix connected to an 8 x 8 microstrip patch antenna array.

An automotive electromagnetic interferenceelectromagnetic compatibility (EMI-EMC) model.

Sinusoidally driven models with linear media are preferably solved in the frequency domain using the finite element method (FEM) or boundary element method (BEM).

For resonances, an *Eigenfrequency* study type is available.

FEATURE OVERVIEW Model Order Reduction

- Reduced-order modeling techniques
- Fast analysis with a very fine frequency step
- Orders of magnitude faster compared to regular frequency sweeps

Electromagnetic Waves, Beam **Envelopes**

- Solves for slowly varying field envelopes, allowing a very coarse mesh. Use for problems much larger than the wavelength, like propagation in optical waveguides or Gaussian beam propagation.
- Includes similar features as the Electromagnetic Waves, Frequency Domain interface.

Filement Derination Generety Material Projection	🏴 🗅 📂 🗔 💫 ち さ 値 節 匣 💼 🏽 🎘 📓 🔍 -					optical_ring_resonator_3d.mph - COMSOL Multiphysics					
A field of the second of the s	File Home Definitions Geometry Materials Physics	Mesh Study Re	esults Developer Csl	Develop							
Model Builder • • organical greenters/ample • organical greenters/	Application Model Builder Manager Workspace Model	a= Variables ▼ ≪ Functions ▼ P ₁ Parameter Case finitions	Build All Geometry	Add Material Materials	Do Electromagnetic Waves, Beam Envelopes • Physics	Add Physics	Build Mesh Mesh 1 • Mesh	Compute Study	Add Study	Electric Field (ewbe) •	
Settings Setti	Madal Builder	Cottings		- 1	Craphics Dian De						
 Component 1 		settings			Graphics Ring Re	sonator ~	turn turn Lunda				
Image: Second	 4 Goptical, ing, resonator, 3d.mph 4 Gobal Definitions P Parameters 1 A Go Gobal Definitions P Parameters 1 A Go Geometry Parts A Go Geometry 1 B Definitions A Go Geometry 1 A Rectangular Waveguide Straight-to-Ring Coupler 1 A Go Geometry 1 A Rectangular Waveguide Straight-to-Ring Coupler 1 A Part Rectangular Waveguide Straight-to-Ring Coupler 1 A Part Rectangular 1 A Study 1 A Free Triangular 1 A Study 1 A Parametric Sweep Step 1: Boundary Mode Analysis Step 2: Boundary Mode Analysis 1 Step 2: Boundary Mode Analysis 1 Step 2: Boundary Mode Analysis 1 Step 3: Wavelength Domain A Results A Batests A Datasets A Datasets A Detic Field (ewbe) A Tansmittance and Los (ewbe) A Electric Mode Field, Port 1 (ewbe) A Electric Mode Field, Port 2 (ewbe) 	Lectromagnet Label: Electron Name: ewbe Domain Sele Selection: All 2 3 4 5 6 Equation Wave Vector Number of direct Unidirectional Type of phase spe User defined Phase, first wave: ϕ_1 phi User Defined Port Sweep User manual p Port Option: Discretizatio Dependent N	ic waves, beam Enve agnetic Waves, Beam Enve extion domains domains is ions: cification: d Wave Vector Specific Settings ont sweep s n variables	velopes							

* 単

Electromagnetic Waves, Boundary Elements

When modeling using the Boundary Element Method (BEM), only boundary meshing is needed. Each dielectric domain must have homogeneous material properties. This approach is advantageous when objects have relatively small boundaries and are far apart.

Transient Modeling

- Electromagnetic wave propagation in media and structures when a time-domain solution is required:
 - Nonsinusoidal waveforms
 - Nonlinear media and harmonic generation
- Simulate broadband behavior and fast Fourier transform (FFT) to the frequency domain

Electromagnetic Waves, Time Explicit

Lean on Memory

Use discontinuous Galerkin formulation and explicit time stepping. Scales better than Electromagnetic Waves, Transient for very large problems.

Scattering Problems

Excite using Background field and absorb waves using Absorbing layer

FEATURE OVERVIEW Data Transformation

pattern at the second resonance.

TDR of a defective microstrip line.

FEATURE OVERVIEW Domain Conditions

- Media are fully user-definable and can be anisotropic, lossy, dispersive, and dependent on other solution variables such as temperatures or deformations
- Background Field excitation for scattering problems
- Perfectly Matched Layer for modeling free space for antenna applications

Half-wave dipole antenna, surrounded by a perfectly matched layer.

Perfect electric conductor (PEC) sphere illuminated by a background plane wave.

Circularly polarized background field in a 2D axisymmetric model.

FEATURE OVERVIEW Material Models

Dispersive Drude-Lorentz media.

Electric Displacement Field Model

- Frequency domain: relative permittivity, refractive index, loss tangent, dielectric loss, Drude-Lorentz, Debye, and Sellmeier dispersion model
- Time domain: relative permittivity, refractive index, polarization, remanent electric displacement, and Drude-Lorentz dispersion model

Magnetic Constitutive Relation

- Frequency domain: relative permeability, and magnetic losses
- Time domain: remanent flux density and magnetization

Material properties

- Constant or nonlinearly dependent upon the fields: isotropic, diagonal, or fully anisotropic
- Bi-directionally coupled to any other physics, and fully user-definable

Array view of complimentary split-ring resonator modeled with periodic conditions.

- Voltage source, current source, and insulating surfaces
- Thick volumes of electrically resistive or conductive material
- Thin layers of electrically resistive or conductive material
- Perfectly conducting boundaries
- Periodicity conditions

- Connections to external circuit models
- Waveguide ports
- Electromagnetic wave excitations
- Absorbing (radiating) boundaries


```
Biconical antenna in an anechoic chamber.
```


FEATURE OVERVIEW Conductive Geometries

- Geometrically very thin, highly conductive, and electrically thicker than skin depth:
 - Perfect Electric Conductor (PEC) boundary condition: lossless and impenetrable
- Geometrically very thin, conductive, and lossy:
 - Transition Boundary Condition: lossy, skin-depth-dependent penetration, and modeled in 2D
- Conductive, electrically much thicker than skin depth:
 - Impedance Boundary Condition: lossy and impenetrable

FEATURE OVERVIEW Data Extraction

- S-parameters
- Impedance and admittance
- Smith plot
- Touchstone file export
- Specific absorption rate (SAR)
- Far-field radiation patterns

#GHz 5 MA R 50 3.0 0.05891382818518446 -67.81516360926776 0.92591813283265 0.03776297940906947 -16.65230114328461 0.05886362720383 0.9259141903749271 -128.9688561486247 0.037748966602644

FEATURE OVERVIEW Antenna Arrays

Moderately sized arrays can be modeled by drawing and exciting the entire array, using lumped ports with different phases. BEM can be advantageous. Alternatively, model a single unit cell with periodic conditions and use an *Array Factor* dataset to extract the far field for an array of any size.

Additional Formulations

FEM

10u

BJT

Output

<10k

₹47k

∽∽−+⊦

100 100

64 x 64 Butler matrix connected to 8 x 8 microstrip patch antenna array.

FEATURE OVERVIEW Axisymmetric Modeling

- Efficient body-of-revolution formulation for axisymmetric structures
- Fast modeling
- Possible to extract 3D results out of 2D axisymmetric simulations

Application Library

Tutorial models:

- More than 30 antenna models
- Couplers and power dividers
- EMI/EMC applications
- Ferrimagnetic devices
- Filters
- Gratings and Metamaterials
- Microwave heating
- Nonlinear Optics
- Scattering and RCS
- Transmission lines and waveguides
- Verification examples

Periodic Structures

- Any structure that repeats in one, two, or all three dimensions can be treated as periodic
- Analyze a single unit cell with Floquet periodic boundary conditions:

 $\mathbf{E}_d = \mathbf{E}_s \exp(-i\mathbf{k}_F \cdot (\mathbf{r}_d - \mathbf{r}_s))$

- Typical examples:
 - Optical gratings
 - Frequency selective surfaces
 - Electromagnetic band gap structures
 - Metamaterials

Driven Periodic Problems

- Ports
 - Excitation
 - Absorption of radiation
 - Add as many as required to absorb all outgoing radiation
- Periodic, diffraction order, and orthogonal polarization ports represent plane waves propagating in the directions of the diffraction orders
 - Respect Floquet periodicity
- Periodic conditions constrain the field to fulfill Floquet periodicity

Top Ports

- Periodic port, excitation
- Orthogonal polarization port
- Diffraction order ports

Periodic Conditions

- Left
- Right
- Back
- Front

Bottom Ports

- Periodic port, listener
- Orthogonal polarization port
- Diffraction order ports

Microwave Heating

Heating of a dielectric block.

Specific absorption rate (SAR) in a human brain.

- Model heat transfer, with the electromagnetic losses as a heat source.
- Frequency-Stationary and Frequency-Transient study types handle bidirectionally coupled models, in which the electromagnetic material properties depend on the temperature.

Structural Deformations in EM Devices

Thermal drift in a cavity filter.

Piezoelectric tunable cavity filter.

- Model how structural deformations affect performance.
- For a narrow-band device, even a comparatively moderate thermal deformation may significantly shift the resonance. This is accurately modeled by combining structural mechanics, heat transfer, a moving mesh in the air/vacuum, and electromagnetic waves.

Conclusion

Used together, COMSOL Multiphysics[®] and the RF Module or the Wave Optics Module provide an all-in-one simulation environment with capabilities well suited for simulating electromagnetic waves. Electromagnetic properties can be considered alone or together with other physics such as heat transfer and structural mechanics.

Optical ring resonator.