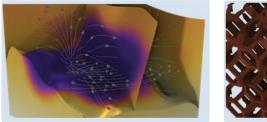
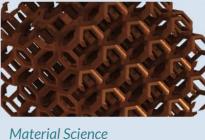


Heat and Moisture Transport in Porous Media

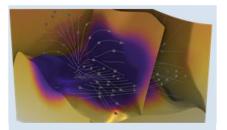
Nancy Bannach

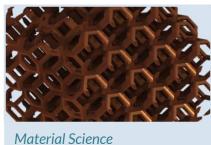


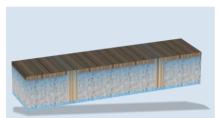
Geothermal Reservoirs



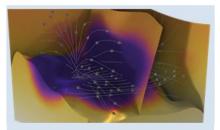
Geothermal Reservoirs




Geothermal Reservoirs

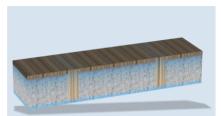


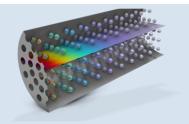
Geothermal Reservoirs

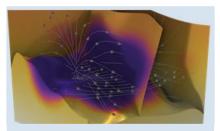


Healthcare Applications

Building & Construction

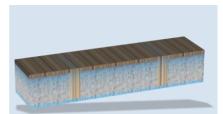

Geothermal Reservoirs

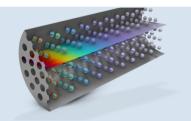

Material Science

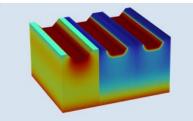

Healthcare Applications

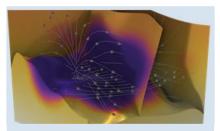
Building & Construction

Packed Bed Reactor


Geothermal Reservoirs

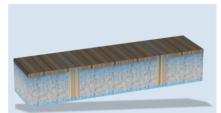

Material Science

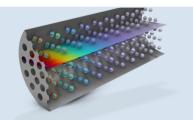

Healthcare Applications

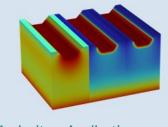

Building & Construction

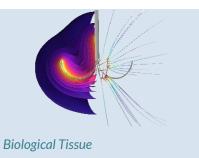
Packed Bed Reactor

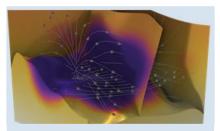
Agriculture Applications


Geothermal Reservoirs


Material Science

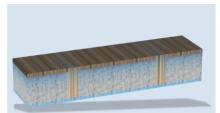

Healthcare Applications

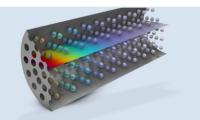

Building & Construction

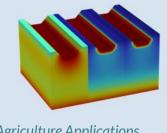


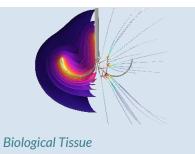
Packed Bed Reactor

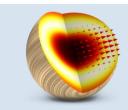
Agriculture Applications


Geothermal Reservoirs


Material Science


Healthcare Applications


Building & Construction



Packed Bed Reactor

Agriculture Applications

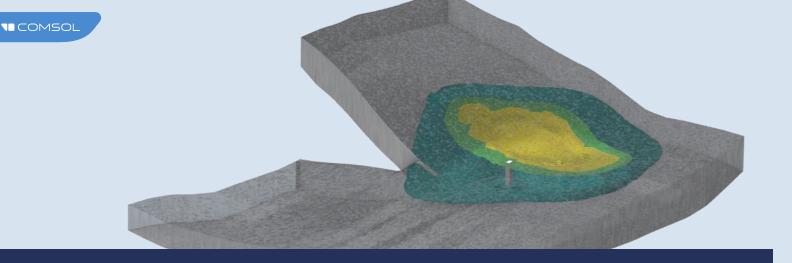
Wood & Paper industry

From Pore-Scale Modeling...

Definition

Explores fluid behavior at the pore level, crucial for understanding capillary action and complex porous media dynamics

Applications


Predicting permeability, understanding multiphase flow, and simulating fluid behavior in biological tissues

Considerations

Fluid properties, boundary conditions, and surface interactions are essential factors for accurate microscopic modeling

Challenges

Intensive computational requirements and the necessity for precise pore geometry representation, crucial for achieving accurate simulations

...to Field-Scale Modeling

Definition

Modeling of large-scale applications with complex fluid dynamics and transport processes in heterogeneous environments

Applications

Optimizing resource extraction strategies, assessing environmental impacts, and informing sustainable engineering practices

Considerations

Fluid properties, boundary conditions, and surface interactions are essential for realistic simulations

Challenges

Precise representation of heterogeneous structures, integration of datasets, and the complex dynamics of chemical processes and materials

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
 - Mixer Module
- Polymer Flow Module
- Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
- Pipe Flow Module
- Molecular Flow Module
- Metal Processing Module
- Heat Transfer Module

STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
 - Fatigue Module
 - Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
- Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS[®]
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC Creo Parametric[™]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
 - Mixer Module
- Polymer Flow Module
 Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
 - Molecular Flow Module
 - Metal Processing Module
 - Heat Transfer Module

STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
 - Fatigue Module
- Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
- Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS[®]
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC Creo Parametric[™]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
 - Mixer Module
- Polymer Flow Module
- Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
- Pipe Flow Module
- Molecular Flow Module
- Metal Processing Module

Heat Transfer Module

STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
 - Fatigue Module
 - Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
- Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS[®]
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC Creo Parametric[™]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

ELECTROMAGNETICS

ADD-ON PRODUCTS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module

FLUID & HEAT

CED Module

Mixer Module

Polymer Flow Module

Semiconductor Module

Rotordynamics Module Multibody Dynamics Module

Fatigue Module

STRUCTURAL & ACOUSTICS

Structural Mechanics Module

Geomechanics Module

Nonlinear Structural Materials Module

Composite Materials Module

MEMS Module

.

Acoustics Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

INTERFACING

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
 - D Import Module
- Chemical Reaction Engineering Module Link[™] for SOLIDWORKS®</sup>
 - Link[™] for Inventor®
 - LiveLink[™] for AutoCAD[®]
 - LiveLink[™] for Revit[®]
 - LiveLink[™] for PTC Creo Parametric[™]
 - LiveLink[™] for Solid Edge[®]
 - File Import for CATIA® V5

COMSOL MULTIPHYSICS®

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

- Fuel Cell & Electrolyzer Module
- Electrodeposition Module

Microfluidics Module

- Porous Media Flow
- Subsurface Flow Mo.

Pipe Flow Module

Molecular Flow Module

Metal Processing Module

Heat Transfer Module

- - Electrochemistry Module
- - Corrosion Module

The platform product for simulating real-world designs, devices, and processes. One user interface for all engineering applications.

- MODEL BUILDER: Combine physics phenomena in one model
- APPLICATION BUILDER: Build simulation apps from models
- MODEL MANAGER: Collaborate and organize models and apps

COMSOL Compiler[™]

Compile simulation apps into executable files. Run them freely on any computer.

COMSOL Server[™]

Host and administrate your simulation apps. Run them through a web interface.

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
 - Mixer Module
- Polymer Flow Module
- Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
- Pipe Flow Module
- Molecular Flow Module
- Metal Processing Module
- Heat Transfer Module

STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
 - Fatigue Module
 - Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
- Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel[®]
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS[®]
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC Creo Parametric[™]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

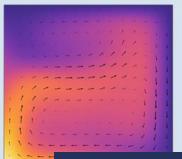
Fluid Flow in Porous Media



Single Phase Flow

Laminar or Creeping flow

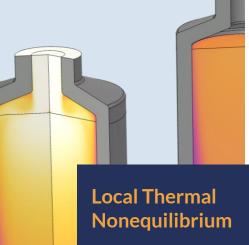
Darcy's law, Richards' Equation


Brinkman equations (Laminar, Turbulent)

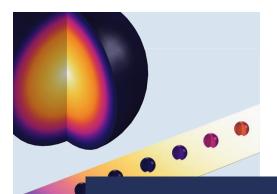
Multiphase Flow

Multiphase transport

Front tracking with Levelset Brinkman

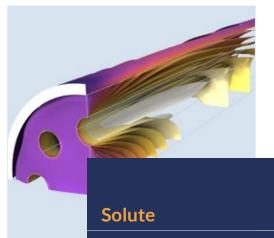

Nonisothermal Flow

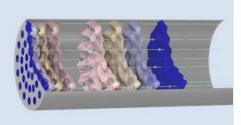
Predefined coupling of Brinkman equations and heat transfer in porous media


Heat Transfer in Porous Media

Local Thermal Equilibrium

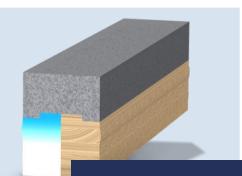
Homogenized porous media; predefined models for effective thermal conductivity


Two-temperature model for porous media where the fluid and solid temperatures differ


Multiscale Heat Transfer, Pellet Beds

Models the temperature in the fluid and the temperature distribution in the pellets at every point

Transport in Porous Media


Diffusion, conduction, and dispersion models Adsorption isotherms Volatilization

Multicomponent

Multicomponent transport in liquids and gases

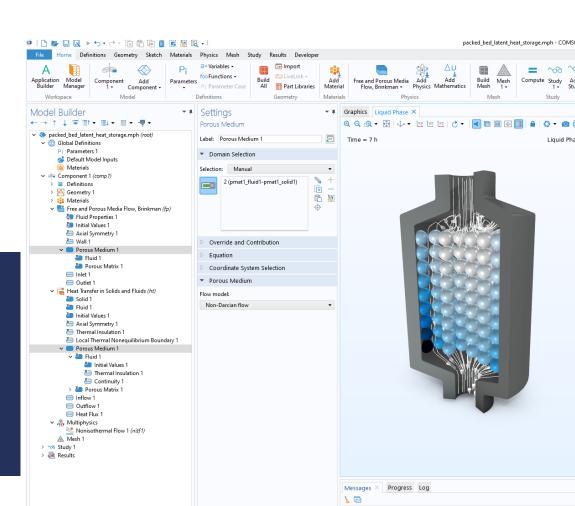
Maxwell-Stefan diffusion, Mixture average, Knudsen Diffusion

Moisture

Liquid water and moist air in equilibrium.

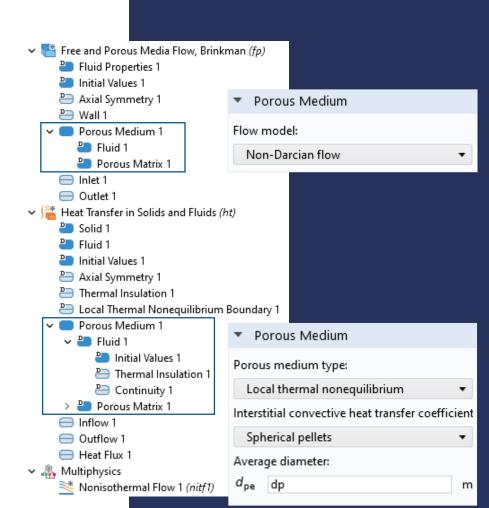
Vapor diffusion and convection in moist air

Convection and capillary flow in the liquid phase.

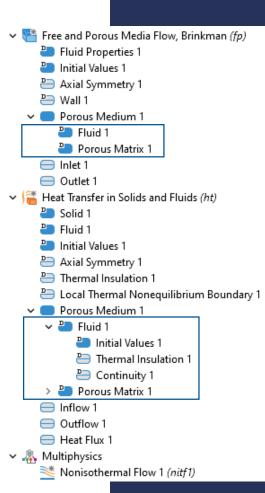

Modelling Porous Materials

Porous Medium

Feature available in various interfaces with settings specific for the physics that is solved.


Porous Material

Special Material to set up all the required properties for the different parts of the porous structure.


Porous Medium

- Feature that is available for various interfaces
- Depending on the interface, different settings apply

Porous Medium

- Feature that is available for various interfaces
- Depending on the interface, different settings apply
- Subnodes hold material properties e.g. Fluid properties and Porous Matrix properties or additional effects can be added e.g. Thermal Dispersion

 Contains the material properties belonging to the porous medium itself but also includes the properties of each individual phase present within it.

🕒 📂 🖳 🕨 🏷 • 🗇 • 🗊 🛱 🖉 🖉 🦉				pac
ile Home Definitions Geometry Sketch Mater	ials Physics Mesh Study Results	Developer		
A plication Model suider Manager Component Add 1 - Component -	f(*) Functions • Build Carlos Pi Parameter Case All Min Par	eLink - Add rt Libraries Materia		 Physics Mathematics
Workspace Model	Definitions Geome	try Material	s	Physics
 ◆ ↑ ↓ ↓ □ ↓ □ ↓ ↓ □ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	 * Settings Porous Material 2 > Override > Porosity 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 * ** Paraffin, liquid (mat3) * ** Glass Wool (mat4) * ** Porous Material 1 (pmat1) ** Fluid 1 (pmat1.fluid 1) 	$\epsilon_{p} = 1 - \theta_{im} = 1 - (\theta_{s} + \theta_{im}f)$ - Volume fractions of immobile phase	es		
Solid 1 (pmat1.solid 1) Immobile Fluid 1 (pmat1.imfluid 1)	♥ Name	Material		Volume fraction
Basic (def)	Solid 1 (pmat1.solid1) Immobile Fluid 1 (pmat1.imfluid1)	Locally define Water, liquid		1-por 0.01
 Axial Symmetry 1 Wall 1 Coous Medium 1 	 Phase-Specific Properties Property 	Variable V	/alue Unit	Phase
Pluid 1 Porous Matrix 1	Density		ho(T) kg/m ³	Fluid 1 (pmat1.fluid1)
⇒ Forous Matrix 1	Density	rho rl	ho(T) kg/m³	Immobile Fluid 1 (pmat1.imf.
😑 Outlet 1	Density	rho rl	ho_av kg/m³	Solid 1 (pmat1.solid1)
		mu e	ta(T) Pa-s	Fluid 1 (pmat1.fluid1)
>) Heat Transfer in Solids and Fluids (ht)	Dynamic viscosity			
> 🚠 Multiphysics	Heat capacity at constant press	ure Cp C	Cp(T) J/(kg⋅K)	Fluid 1 (pmat1.fluid1)
> 🧸 Multiphysics 🔺 Mesh 1	Heat capacity at constant press Heat capacity at constant press	ure Cp C ure Cp C	p(T) J/(kg·K) p(T) J/(kg·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf.
 > ▲ Multiphysics ▲ Mesh 1 > ∞ Study 1 	Heat capacity at constant press Heat capacity at constant press Heat capacity at constant press Thermal conductivity	ure Cp C ure Cp C k_iso ; ki k	p(T) J/(kg·K) p(T) J/(kg·K) (T) W/(m·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1)
> 🚠 Multiphysics	Heat capacity at constant press Heat capacity at constant press Heat capacity at constant press Thermal conductivity Thermal conductivity	ure Cp C ure Cp C	p(T) J/(kg·K) p(T) J/(kg·K) (T) W/(m·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf.
> 🚠 Multiphysics 🔺 Mesh 1 > 🕉 Study 1	Heat capacity at constant press Heat capacity at constant press Heat capacity at constant press Thermal conductivity	ure Cp C ure Cp C k_iso ; ki k	p(T) J/(kg·K) p(T) J/(kg·K) (T) W/(m·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1)
> 🊠 Multiphysics 🛆 Mesh 1 > 🕫 Study 1	Heat capacity at constant press Heat capacity at constant press Thermal conductivity Thermal conductivity Thermal conductivity ************************************	ure Cp C ure Cp C k_iso ; ki k	p(T) J/(kg·K) p(T) J/(kg·K) (T) W/(m·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1)
> 🏯 Multiphysics 🛆 Mesh 1 > 🕫 Study 1	Heat capacity at constant press Heat capacity at constant press Thermal conductivity Thermal conductivity Add Required Phase Nodes Homogenized Material	ure Cp C ure Cp C k_iso ; ki k	p(T) J/(kg·K) p(T) J/(kg·K) (T) W/(m·K)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf.
 > ▲ Multiphysics ▲ Mesh 1 > ∞ Study 1 	Heat capacity at constant press Hormal conductivity Heat co	ure Cp C ure Cp C k_iso; ki k k_iso; ki k	ip(T) J/(kg·k) (p(T) J/(kg·k) (T) W/(m·k) (T) W/(m·k)	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf.
 > ▲ Multiphysics ▲ Mesh 1 > ∞ Study 1 	Heat capacity at constant press Heat capacity at constant press Thermal conductivity Thermal conductivity Hormal conductivity Homogenized Phase Nodes Homogenized Material Material Locally defined Homogenized Properties	ure Cp C ure Cp C k_iso ; ki k	ip(T) J/(kg-k) jp(T) J/(kg-k) (T) W/(m-k) (T) W/(m-k) (T) W/(m-k) Value Unit	Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf. Fluid 1 (pmat1.fluid1) Immobile Fluid 1 (pmat1.imf.

Which phases require definition is dictated by the physics involved, and the porous material detects what needs to be specified.

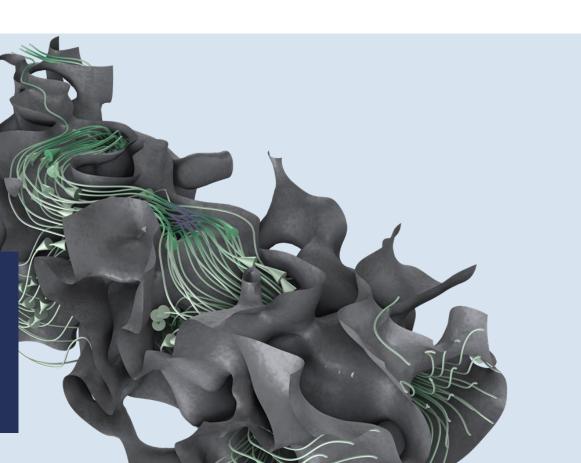
File Home Definitions Geo	ometry Sketch Mater	rials Physics Mesh St	tudy Results Develo				
Application Model Builder Manager	t Add Paran Component	a= Variables • f(x) Functions • P1 Parameter Case	Build All Part Librarie	Add Add Materia	al Flow, Br		Add Add Physics Mathematic
Workspace N	Vlodel	Definitions	Geometry	Materia	s	Phys	ics
Model Builder ← → ↑ ↓ ☞ □↑ • □↓ • □ > ⊕ Global Definitions • ➡ Component 1 (comp 1) > ■ Definitions > ⊠ Geometry 1 • ➡ Materials	▼ - ▼ •	 Settings Porous Material 2 					4 [[[[
> 🍰 Water, liquid (mat1)		Override					
> 🙀 Paraffin, solid (matz		 Porosity 					
 Porous Material 1 Fluid 1 (pmati Solid 1 (pmati 	1.fluid 1)	$=$ 1 - θ_{im} $=$ 1 - (Volume fractions of	f immobile phases				
🎼 Immobile Flui	-	Name vid 1) alid 1 (pmat1.solid1		Material Locally defin	- 1		Volume fraction
Basic (def)	a i (primi include	mobile Fluid 1 (pm		Water, liquid			1-por 0.01
 Axial Symmetry 1 Wall 1 Porous Medium 1 Fluid 1 		Phase-Specific P Property	Properties	Variable	Value Un	nit Phas	se
Porous Matrix 1	I	🗹 Density		rho r	rho(T) kg/	/m³ Fluid	1 1 (pmat1.fluid1)
😑 Inlet 1		Density					obile Fluid 1 (pmat1.ii
Outlet 1 > (Heat Transfer in Solids a	and Fluids (ht)	Density Dynamic viscos	city.		ho_av kg/ eta(T) Pa-		l 1 (pmat1.solid1) I 1 (pmat1.fluid1)
> 🚠 Multiphysics			at constant pressure				1 (pmat1.fluid1)
▲ Mesh 1 > ∞ Study 1			at constant pressure			-	obile Fluid 1 (pmat1.ii
> 📠 Results		Thermal condu	,	k_iso;ki k			1 1 (pmat1.fluid1)
		Thermal condu	· · · · · · · · · · · · · · · · · · ·	k_iso ; ki k	:(T) W/	′(m·K) Imm	obile Fluid 1 (pmat1.ii
		##1 Add Required Pho Image: Homogenized N Material: Locally c Homogenized Pho	Material defined				▼ III III III
		Property		Variable	Value U	Unit Pr	operty group
		Permeability		kappa_is			isic
		Porosity		epsilon	0.48 1	Do	orous model

Porosity is calculated from specified volume fraction of all solid and immobile phases.

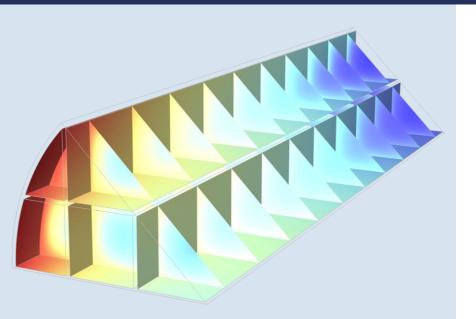
I I I I I I I I I I I I I I I I I I I	Geometry Sketch		hysics Mesh	Study Results Deve	eloper								
Application Model Builder Manager	Add Component •	Pi a Parameters	= Variables → ≫Functions → Pi Parameter Cas	Build All Mart Libra	Add aries Mater	Free Fial Fl	and Porous N low, Brinkman	n • Physics	∆U Add Mathematics				
Workspace	Model	Def	finitions	Geometry	Mater	ials		Physics					
Model Builder → ↑ ↓ ☞ III • III • • ③ packed_bed_latent_heat_st > ⊕ Global Definitions • ♣ Component 1 (comp 1)	torage.mph (root)		Settings Porous Material	1					** [ii]				
>									۰ <u>÷</u> ۰				
V 🔛 Materials													
> 🝰 Water. liquid (r	mat1)	Þ	Override										
> 🉀 Paraff 🔻 P(> 🙀 Paraff	orosity												
Glass	$1 - \theta_{im} = 1 - (6)$	$\theta_s + \theta_{imf}$											
📫 🐂 Fl	`	,											
> ⊯n sk — Volu ≣ຶIn	ume fractions of	immobile p	hases										
<u> </u>	ame				Volume fraction								
🗸 🔚 Free and	1 (pmat1.solid1)			Material		1							
				Locally defined				1-por					
Initial Improve			1)	Locally defined Water, liquid (mat	:1)			1-por 0.01					
P Initial	obile Fluid 1 (pm			Locally defined Water, liquid (mat	:1)								
 Initial Axial Wall 1 Vall 1 	obile Fluid 1 (pm		rnase-opecii	Water, liquid (mat	-	Value		0.01					
P Initial Axial Wall 1 V Porous Mediur Pluid 1	obile Fluid 1 (pm m 1	at1.imfluid	Property	Water, liquid (mat	1) Variable	Value rho(T)	Unit	0.01 Phase	1.fluid1)				
2 Initial Axial 2 Wall 1 • Porous Mediur 2 Fluid 1 2 Porous Mat	obile Fluid 1 (pm m 1	at1.imfluid	Property Density	Water, liquid (mat	Variable	rho(T)	Unit kg/m³	0.01 Phase Fluid 1 (pmat		F			
Pinitial Axial Wall 1 Porous Mediur Fluid 1	obile Fluid 1 (pm m 1	at1.imfluid	Property Density Density	Water, liquid (mat	Variable rho	rho(T) rho(T)	Unit	0.01 Phase Fluid 1 (pmat	d 1 (pmat1.imf	f			
 Initial Axial Wall 1 Wall 1 Fluid 1 Porous Mediur Porous Madiur Inlet 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Image: specific property	Water, liquid (mat	Variable rho rho	rho(T) rho(T) rho_av	Unit kg/m ³ kg/m ³	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat'	d 1 (pmat1.imf. 1.solid1)	F			
 Initial Axial Wall 1 Porous Mediur Fluid 1 Porous Materia Inlet 1 Otatet 1 Sim Heat Transfer in So Multiphysics 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	 Property Density Density Density Density Dynamic vi 	Water, liquid (mat	Variable rho rho rho	rho(T) rho(T) rho_av eta(T)	Unit kg/m ³ kg/m ³	Phase Fluid 1 (pmat [*] Immobile Flui	id 1 (pmat1.imf. 1.solid1) 1.fluid1)	F			
 Initial Axial Wall 1 Porous Mediur Fluid 1 Fluid 1 Inlet 1 Outlet 1 Met Transfer in So Metsh 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	 Property Density Density Density Dynamic vi Heat capac 	Water, liquid (mat	Variable rho rho rho mu	rho(T) rho(T) rho_av	Unit kg/m ³ kg/m ³ Pa·s	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat'	id 1 (pmat1.imf. 1.solid1) 1.fluid1)				
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	 Property Density Density Density Dynamic vi Heat capac 	Water, liquid (mat ic rropertes iscosity ity at constant pressure ity at constant pressure	Variable rho rho rho mu Cp	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T)	Unit kg/m ³ kg/m ³ Pa·s J/(kg·K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf.				
 Initial Axial Wall 1 Porous Mediur Fluid 1 Fluid 1 Inlet 1 Outlet 1 Met Transfer in So Metsh 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	 Property Density Density Density Density Density Heat capace Heat capace 	Water, liquid (mat in respectes iscosity ity at constant pressure inductivity	Variable rho rho rho mu Cp Cp	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa·s J/(kg·K) J/(kg·K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf.	f			
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Density Density Density Density Density Dynamic vi Heat capac Heat capac Thermal co	Water, liquid (mat in respectes iscosity ity at constant pressure ity at constant pressure inductivity inductivity	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1)	f			
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Property Density Density Density Dynamic vi Heat capac Heat capac Thermal co Thermal co Add Required	Water, liquid (mat in respected iscosity ity at constant pressure inductivity inductivity I Phase Nodes	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1)	t1.imf.			
Initial Immu A value of the second secon	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Property Density Density Density Dynamic vi Heat capac Heat capac Thermal co Thermal co Hat Add Required	Water, liquid (mat in respected iscosity ity at constant pressure inductivity inductivity I Phase Nodes	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1) d 1 (pmat1.imf.	f			
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Density Density Density Density Density Dynamic vi Heat capac Thermal co	Water, liquid (mat in respected iscosity ity at constant pressure inductivity inductivity I Phase Nodes	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1)	f			
Initial Immu A value of the second secon	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Density Density Density Density Density Density Density Dynamic vi Heat capac Thermal co Thermal co Thermal co Thermal co Add Required Homogenize Material: Loca	Water, liquid (mat ic rropertes iscosity ity at constant pressure ity at constant pressure inductivity phase Nodes id Material IIIy defined	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T)	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1) d 1 (pmat1.imf.	f.			
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Density Density Density Density Density Dynamic vi Dynamic vi Heat capac Thermal co Thermal co Thermal co Add Required Homogenize themogenize	Water, liquid (mat ic rropertes iscosity ity at constant pressure ity at constant pressure inductivity phase Nodes id Material IIIy defined	Variable rho rho rho Cp Cp Cp k_iso; ki k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T) k(T)	Unit kg/m ³ kg/m ³ kg/m ³ J/(kg-K) J/(kg-K) W/(m-K) W/(m-K)	Phase Fluid 1 (pmat Immobile Flui Solid 1 (pmat Fluid 1 (pmat Fluid 1 (pmat Immobile Flui Immobile Flui	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1) d 1 (pmat1.imf.	f.			
 Initial Axial Wall 1 Porous Mediur Porous Mediur Fluid 1 Porous Mat Initet 1 Outlet 1 Multiphysics Mesh 1 Study 1 	obile Fluid 1 (pm m 1 trix 1	at1.imfluid	Property Density Density Density Density Density Density Density Dynamic vi Heat capac Thermal co Thermal c	Water, liquid (mat ic rropertes iscosity ity at constant pressure ity at constant pressure inductivity inductivity IPhase Nodes id Material Illy defined id Properties	Variable rho rho mu Cp Cp k_iso; ki	rho(T) rho(T) rho_av eta(T) Cp(T) Cp(T) k(T) k(T) Value	Unit kg/m ³ kg/m ³ Pa-s J/(kg-K) J/(kg-K) W/(m-K)	Phase Fluid 1 (pmat' Immobile Flui Solid 1 (pmat' Fluid 1 (pmat' Fluid 1 (pmat' Immobile Flui Fluid 1 (pmat'	d 1 (pmat1.imf. 1.solid1) 1.fluid1) 1.fluid1) d 1 (pmat1.imf. 1.fluid1) d 1 (pmat1.imf.	f			

Phase-Specific Properties such as for the solid, fluid, or immobile fluid phase are defined in the corresponding subnode of the Porous Material.

) C 🏲 🖯 🐼 🕨	م • ر•		R 🕅 🛛	a •						pac	ced_ł
File Home Defin	itions	Geometry Sketch	Materials	Physics Mesh	Study Resu	lts Develop	er				
A pplication Builder Workspace	Comp 1	onent Add Component - Model	Pi Paramete	a= Variables → f⊗ Functions → P ₁ Parameter Cas Definitions	e All M	Import LiveLink + Part Libraries		ee and Porous I Flow, Brinkma		ł	Bu Me
			- 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,		
lodel Builder - → ↑ ↓ ∵ ≣ ≣†	- 181	• III • - •	* #	Settings Porous Material							
 ✓ ③ packed_bed_laten > ④ Global Definiti ✓ ➡ Component 1 > ■ Definitions > ⊠ Geometry ✓ ➡ Materials 	t_heat_s ions <i>(comp 1</i> , s	torage.mph (root)		2						÷	+
> 🔪 Water,				Override							
> 🙀 Paraffi > 🙀 Paraffi				 Porosity 							
> 💼 Glass V 🗸 🍲 Porous		at4) al 1 (pmat1)		$\epsilon_{\rm p} = 1 - \theta_{\rm im} = 1$	$-(\theta_s + \theta_{imf})$						
		nat1.fluid1)		 Volume fraction 	s of immobile p	hases					
		nat1.solid1) Fluid 1 (pmat1.imfluid1)		Name		N	Aaterial		Volume fraction	on	
🕕 Ba	sic (def)			Solid 1 (pmat1.so			ocally defined		1-por		
✓ ¹ Free and P ■ Fluid P		Aedia Flow, Brinkman (f ≪ 1	p)	Immobile Fluid 1	(pmat Limfluid) Vi	/ater, liquid (mat1)		0.01		
anitial 🔪	Values 1										_
😬 Axial S 😁 Wall 1	ymmet	ry 1		 Phase-Specif 	ic Properties						
V 🛑 Porous		m 1		Property		1	/ariable Value	Unit	Phase		
P (hase-Specific Pr	oportio				1				
Inlet 1 Outle	· F	nase specific Pi	operae	5							
>) 🚟 Heat Tran	**	Property			Variable	Value	Unit	Phase			
 A Multiphy: Mesh 1 	\square	Density			rho	rho(T)	kg/m³	Fluid 1	(pmat1.fluid1)		\sim
> \infty Study 1 > 📠 Results		Density			rho	rho(T)	kg/m³	Immob	ile Fluid 1 (pmat1.i	imf	
0	\square	Density			rho	rho_av	kg/m³	Solid 1	(pmat1.solid1)		
	\square	Dynamic viscos	ity		mu	eta(T)	Pa∙s	Fluid 1	(pmat1.fluid1)		
	\square	Heat capacity at	t constar	nt pressure	Ср	Cp(T)	J/(kg·K)	Fluid 1	(pmat1.fluid1)		
	\square	Heat capacity at	t constar	nt pressure	Ср	Cp(T)	J/(kg·K)	Immob	ile Fluid 1 (pmat1.i	imf	
	\square	Thermal conduc	tivity		k_iso ; ki	k(T)	W/(m·K)	Fluid 1	(pmat1.fluid1)		
	\square	Thermal conduc	tivity		k_iso ; ki	k(T)	W/(m·K)	Immob	ile Fluid 1 (pmat1.i	imf	\sim
	i A	dd Required Pha	se Node	s							


Homogenized Properties refer to material properties that pertain not to individual phases but to the entire porous medium, such as permeability.

It is also applicable for interfaces without a specific porous medium features when the properties of the porous medium have already been homogenized, such as the Young's Modulus in structural mechanics.


I I I I I I I I I I I I I I I I I I I			Physic	cs Mesh S	Study Re	esults Devel	loper				I
Application Builder Model Workspace	\otimes	Pi Parameters	a≕Va f⊗Fu	ariables • unctions • arameter Case	Build	Himport	Ad	d Fr erial	ree and Porous N Flow, Brinkmar	Media Add • Physic Physics	Add s Mathematics
	wode.					Jeomery		inu.s		Thysics	
Model Builder		▼ #	Set	tings							
← → ↑ ↓ ® ≣t • ≣↓ •	≣		Poro	us Material							
✓ ◆ packed_bed_latent_heat_stora ✓ ◆ Global Definitions ✓ ← Component 1 (comp 1) > ≡ Definitions > ⋈ Geometry 1	3ge.mph (root)			2							م الر نؤ
✓ 📑 Materials										_	
> 💺 Water, liquid (mat	t1)		▷ 0	verride							
> 🙀 Paraffin, solid (ma > 🙀 Paraffin, liquid (m	at2)		- Pi	orosity							
> 📫 Glass Wool (mat4)			E. =	$1 - \theta_{im} = 1 - ($	$(\theta_{r} + \theta_{im})$)					
🗸 🍲 Porous Material 1						.,					
🚺 Fluid 1 (pmat				ume fractions o	of immobil	e phases					
> : Solid 1 (pmat)			₩ _{Na}	ame			Material			Vol	ume fraction
	id 1 (pmat1.imfluid1)							Locally defined 1-por			
Basic (def) ✓ Free and Porous Media	in Flow Brinkman (fo)		Immobile Fluid 1 (pmat1.imfluid1) Water, liquid (mat1)						0.0		
 Axial Symmetry 1 Wall 1 Porous Medium 1 			▼ Pł	hase-Specific F	Properties	5	Variable	Value	Unit	Phase	
Fluid 1 Porous Matrix	- 1			Density			rho	rho(T)	kg/m³	Fluid 1 (pm	at1.fluid1)
Inlet 1	1			Density			rho	rho(T)	kg/m³		luid 1 (pmat1.in
Outlet 1				Density			rho	rho_av	kg/m³	Solid 1 (pm	
>) 🛗 Heat Transfer in Solids	s and Fluids (ht)			, Dynamic visco	osity		mu	eta(T)	Pais	Fluid 1 (pm	
> 🚲 Multiphysics				Heat capacity		t pressure	Ср	Cp(T)	J/(kg·K)	Fluid 1 (pm	
Mesh 1				Heat capacity	at constan	t pressure	Ср	Cp(T)	J/(kg·K)	Immobile F	luid 1 (pmat1.in
> % Study 1 > 🔎 Results				Thermal condu			k_iso ; ki		W/(m·K)	Fluid 1 (pm	
/ Menesuro				Thermal condu	uctivity		k_iso ; ki		W/(m·K)		luid 1 (pmat1.ir
▼ Hor	mogenized Mat										▼ =
Material	mogenized Pro	perties			Variabl	e Value		Unit	Prope	rtv group	
Material Hor P	mogenized Pro Property	perties					-			rty group	
Material Hor P	mogenized Pro	perties			Variabl kappa_ epsilon	is 1e-12	-	Unit m²	Basic	rty group s model	

THE FLUID FLOW INTERFACES Porous Media Flow

Modeling saturated and unsaturated single- and multiphase flow in porous structures

Darcy's Law

Background

Fundamental equation in hydrogeology to describe slow flow through porous media like soil or rocks, where velocity linearly depends on the pressure gradient

 $\nabla p = -\frac{\mu}{\kappa} \mathbf{u}$

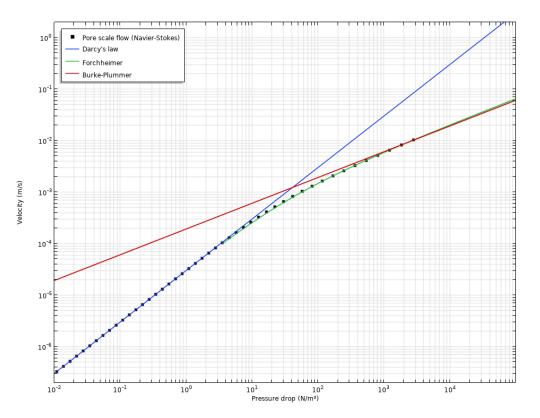
Permeability Models

Use anisotropic permeability, Kozeny– Carman, hydraulic conductivity, or even non-Darcian relationships

Applications

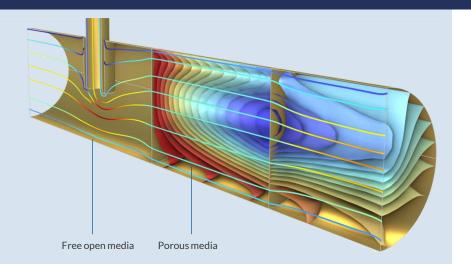
In petroleum and civil engineering and environmental science, and enabling efficient groundwater management, oil extraction, and pollution assessment

Storage Models


Include different storage models to account for water absorbed or released due to changes in hydraulic head

Non-Darcian Flow

 Non-Darcian flow options account for the nonlinear relationship between pressure drop and velocity:


$$\nabla p = -\frac{\mu}{\kappa} \mathbf{u} - \beta \rho |\mathbf{u}| \mathbf{u}$$

- Forchheimer and Ergun (Re < 1000)
- Burke-Plummer (Re > 1000)
- Klinkenberg (gas slippage)

Comparison of the different permeability models with pore scale flow. Read more in the COMSOL Blog post.

Brinkman Equations

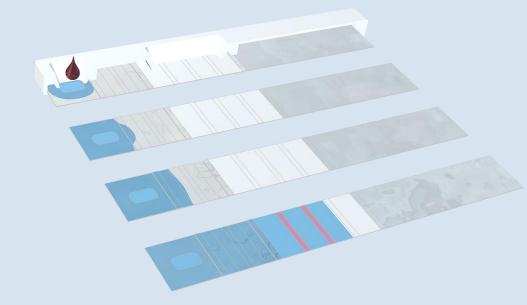
Background

Modified Navier–Stokes equations (or extended Darcy's law) for higher flow rates accounting for inertia and wall effects.

Applications

Wide range of applications for all kinds of porous materials like biophysics, filtration processes, and enhanced oil recovery

Extensions


Porous slip wall treatment accounts for the slip condition walls, while the Forchheimer correction incorporates additional nonlinear resistance to the flow due to inertial effect

Turbulence

Keeps track of and conserves turbulence variables for flow through porous domains

Flow in Variable Saturated Porous Media

The Richards' Equation Interface

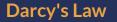
One Single Equation

That describes the movement of water through a partially saturated medium, where air pressure differences equilibrate quickly with atmospheric pressure, considering Darcy velocity only for the wetting phase

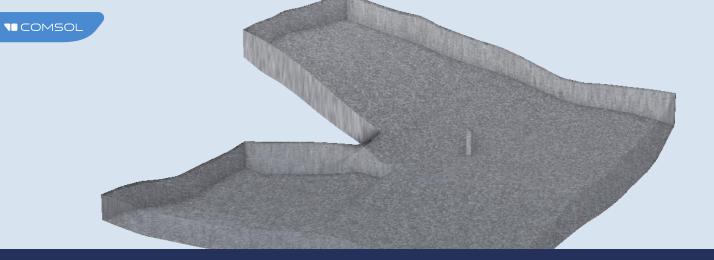
Retention Models

Interplay of moisture content, permeability, and water retention using Brooks-Corey, van Genuchten, or user-defined relationships

Storage Models


Account for storage of fluid using linearized or user-defined models or storage from liquid content

Free and Porous Media Flow



Brinkman Equations

The coupling of porous media flow governed by Brinkman equations with free flow is done in a single physics interface. This is feasible due to the striking similarity between the Navier-Stokes and Brinkman equations.

New in version 6.2, there is a multiphysics coupling that integrates porous media flow following Darcy's law and free flow. Boundary conditions are set at the interface between the free flow and porous media.

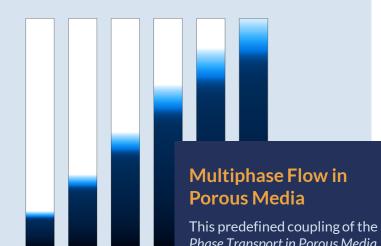
Multiphase Flow

Overview

Simultaneous movement of two or more distinct phases, such as gas, liquid, or solid particles, within a porous medium

Applications

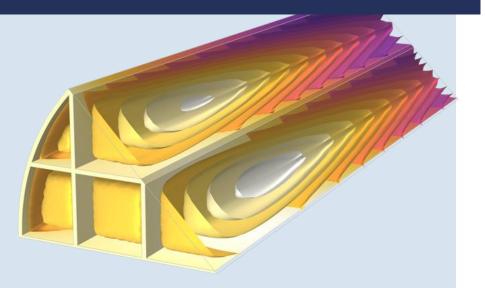
Enabling efficient resource extraction in the oil and gas industry, environmental remediation, drug delivery system optimization, and porous materials research


Challenges

Complex phenomena due to interfacial tension, capillary pressure, and wettability, and phenomena like phase transitions and saturation changes

Multiphase Flow in Porous Media

Two-Phase Flow, Level Set, Brinkman Equations


This predefined coupling of a Level Set interface with a Brinkman Equations interface tracks moving interfaces in porous media and can be used to model e.g., resin transfer molding.

This predefined coupling of the Phase Transport in Porous Media and Darcy's Law interfaces solves for the averaged volume fractions of the different phases.

Capillary diffusion is available.

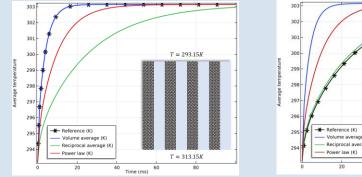
Heat Transfer in Porous Media

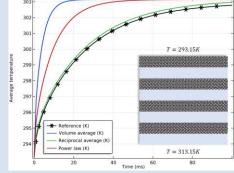
Convection

Heat transfer in porous media, moist porous media, building materials, and fractures with velocity field from Darcy's law or Brinkman equations

Conduction

Effective values for material properties of different structures of porous materials, with up to five different immobile phases


Thermal Dispersion


Spreading of heat due to fluid movement within the porous structure, leading to a more uniform temperature distribution

Geothermal Heating

Add contributions from radiogenic heat production and geothermal gradients

 Porous Medium 	
Porous medium type:	
Local thermal equilibrium	
Effective thermal conductivity:	
Fluid spherical inclusions	
Plane layers parallel to heat flow	
Plane layers perpendicular to heat flow	
Power law	
Solid spherical inclusions	
Fluid spherical inclusions	
Wrapped screen	
Sintered metal fibers	
Equivalent thermal conductivity	

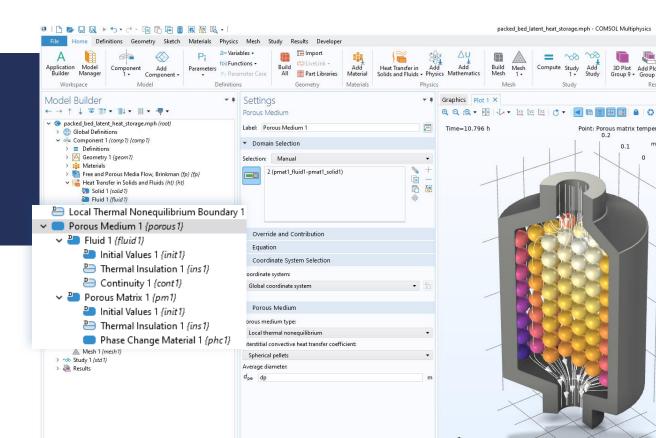
•

Local Thermal Equilibrium

- Temperature of the solid matrix and the fluid (and possible other phases) within the pores are the same at any given point and time
- Effective material properties are computed for the porous medium averaged over all phases
- Effective thermal conductivity depends on the structure of the porous medium

Local Thermal Nonequilibrium

- Solid and fluid temperature are not in local equilibrium
- Temperature differences can be substantial for fast nonisothermal flows, phase change, or on short time scales

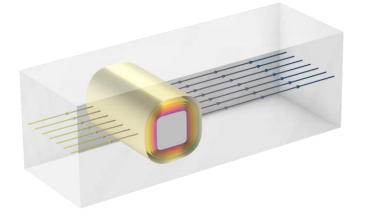


У_ † _ ×

0.1

Local Thermal Nonequilibrium

- Fluid and Solid each have default boundary conditions (interaction with adjacent domains) and initial values.
- Additional subnodes are available for each phase.
- Local Thermal Nonequilibrium Boundary for two-temperature boundaries

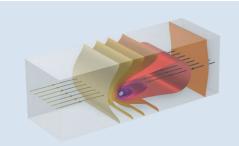


У_ † _ ×

0.1

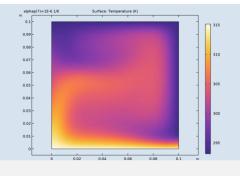
Phase Change in Porous Media

- Specify properties of each phase.
- Define the Phase transition function.
- Consider residual phases.

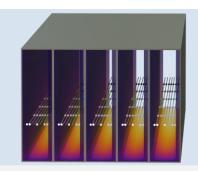

 Number of Phase Transitions 					
Number of phase transitions:					
1	•				
	_				
Sketch					
 Phase Change 					
Phase transition function:					
User defined	•				
Latent heat from phase 1 to phase 2:					
$L_{1 \rightarrow 2}$ L	J/kg				
Phase transition between phase 1 and phase 2:					
$\alpha_{1 \rightarrow 2}$ f_phtr(T)	1				
 Phase 1 					
Material, phase 1:					
Ice (mat3) 🔹	1				
Thermal conductivity:					
k1 From material	•				
Density:					
ρ ₁ From material	•				
Heat capacity at constant pressure:					
C _{p,1} From material	•				
Ratio of specific heats:					
γ ₁ Automatic	•				
Phase 2					

Number of phase transitions

Define phase change function (linear, Heaviside, or user defined)

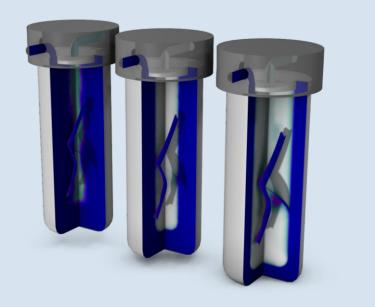

Set up material properties for each phase

Nonisothermal Flow


Material Properties

Understand the impact of temperature-dependent properties, such as viscosity, density, and thermal conductivity, on the fluid's behavior

Free Convection


Buoyancy effects due to temperature gradients lead to density differences, driving natural convection. Use the Boussinesq approximation method to simplify the density variations in the buoyancy term

Viscous Dissipation

Conversion of mechanical energy into heat due to internal friction within the fluid, especially those involving high velocities or complex geometries

Solute Transport in Porous Media

Advection

Transport of diluted species in saturated and unsaturated porous media, with velocity field from Darcy's law, Richards' equation, or Brinkman equations

Adsorption

Adhering of solute to the surface of the porous structure using Langmuir, Freundlich, Toth, or Brunauer-Emmett-Teller (BET) isotherms

Volatilization

Volatile substances transition from liquid or solid phases to gas within porous materials, influencing, for example, the fate of pollutants

Diffusion

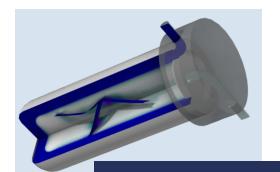
Effective diffusion accounting for the impact of the porous structure using the Millington–Quirk, Bruggeman, or Tortuosity formulations

Dispersion

Spreading of solutes as they move through the pore network due to mechanical mixing, diffusion, or the tortuosity of the flow paths

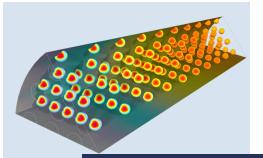
Transport of Diluted Species in Porous Media

- Effective diffusion:
 - Millington-Quirk
 - Bruggeman
 - Tortuosity —
- Adsorption:
 - Langmuir _
 - Freundlich
 - Toth —
 - Brunauer-Emmett-Teller (BET) —
- Dispersion •
- Volatilization in partially saturated media •

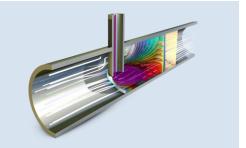

■ 1 ▶ 日 🔍 ▶ ち・け・ 咱 合 庙 直 展 湖						monolith_th	ermal_stress.mph - COMSOL Multi
File Home Definitions Geometry Materials Phys							
Application Model Builder Workspace Model D	a= Variables + f(x) Functions P ₁ Parameter efinitions	Build Case All	mport .iveLink + Part Libraries netry	Add Material Materials		Add Add a - Physics Mathematics Mesh	
i contrator de la contrator de la contratoria de la contratoria de la contratoria de la contratoria de la contra			neuy	IVIDLEIIDIS			Study
Model Builder	Securi	gs			~ #	Graphics Conversion ×	_
$\leftarrow \rightarrow \uparrow \downarrow \bigcirc \blacksquare \uparrow \bullet \blacksquare \downarrow \bullet \blacksquare \bullet \blacksquare \bullet \blacksquare \bullet$	Fluid						🗠 🕐 🔹 🚺 🖬 🔛
Type filter text	Label: F	uid 1					
 	> Dom	in Selection				— 0.96	
Pi Parameters 1						0.96	
Inputs	Equa					0.9	
> 🌐 Materials > 🕍 Thermodynamics	Mod	el Input			×.	0.83	,
> • Component 1	Conv	ection					
✓ ■ 3D Model > ■ Definitions	▼ Diffu:	ion				0.76	
> 🖂 Geometry 1(3D)	$D_{e,i} = D$	ų.				0.7	
> 📰 Materials	Source:						
 *** Chemistry 1 * Transport of Diluted Species in Porous Media 	Materia	1			•	0.63	
🗸 🔚 Porous Medium 1	Fluid mat	erial:				0.57	
Porous Matrix 1	None				• <u>1</u> 1		
Porous Matrix 1	Fluid diffu	sion coefficient:				0.5	
🔚 Initial Values 1	D _{F,cH2O}	User defined			•	0.43	
) Reactions 1 Inflow 1		pp1mat1.df4.D11	0	0			
G Outflow 1		0	0	0	m²/s	0.37	
> 🍓 Heat Transfer in Porous Media 1		0	0	0		0.3	
> 📑 Darcy's Law 1 > 😅 Solid Mechanics		Diagonal			•	0.23	
🚜 Multiphysics	D _{F,cNH3}	User defined			•	0.23	
> 🚵 Mesh 1 > 🗝 Study 1		pp1mat1.df1.D11	0	0		0.17	
> not study 1			0	0	m²/s	0.1	
> 🗠 Study 3		0	0	0			
> 📠 Results		Diagonal 👻			•	0.03	*
	D _{F,cNO}	User defined			•	y z x	
		pp1mat1.df2.D11	0	0			
		0	0	0	m²/s		
		0	0	0			
		Diagonal			•	Log Messages × Progress	Table 2
	D _{F,cO2}	D _{F,cO2} User defined •			•		
		pp1mat1.df3.D11	0	0			
		0	0	0	m²/s		

Transport of Concentrated Species in Porous Media

- Diffusion models:
 - Maxwell-Stefan
 - Mixture-averaged
 - Fick's law
- Effective diffusion:
 - Millington-Quirk
 - Bruggeman
 - Tortuosity
- Knudsen diffusion
- Thermal diffusion

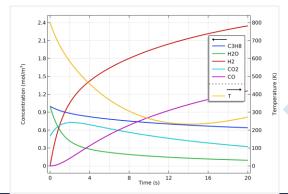

■ 1 2 2 2 2 4 5 7 7 自自自民初民		2 3	metr	hane_steam_reformer_nirf.mph - COMSOL		
File Home Definitions Geometry Sketch Materials	2 · · · · · · · · · · · · · · · · · · ·	Developer				
Application Model Builder Workspace Model	a=Variables • f® Functions • PI Parameter Case efinitions Geomet	Link - Add Transport of Conc Libraries Material Species in Porous	entrated Add Add Media - Physics Mathematics Physics	Build Mesh Mesh 1- Mesh Study 2: S		
		y Matchais		Stody		
Model Builder ▼ # ← → ↑ ↓ ☞ □↑ ▼ □↓ ▼ □↓ ▼ ▼ Type filter text C ▼ @ Global Definitions P arameters 1 ● Global Model Inputs ● Materials > ▷ Materials > ▷ Thermodynamics > ▷ Component 1 ● Definitions > ▷ Materials > ▷ Perintions > ▷ Materials > ○ Component 1 ♥ ○ Component 1 ● Component 2 > ● Definitions > ○ Geometry 1(2Daxi) > ● Species Molar Masses ● Species Molar Masses ♥ Porous Medium 1 ■	Settings Fluid Label: Fluid 1 Domain Selection Equation Model Input Density Convection Velocity field: U Velocity field (nir1) Velocity field (nir1) Diffusion Binary diffusion input type:		in the second second			
Porous Medium 1	Table					
Porous Matrix 1	Maxwell-Stefan diffusivities					
 Initial Values 1 Axial Symmetry 1 No Flux 1 Reaction Sources 1 Inflow 1 Outflow 1 	** Specia Species. Diffusivity wCH4 wCO Maxwell-Stefa wCH4 wCO2 Maxwell-Stefa	Diffusion coefficient (m^2/s)		Ç/		
Free and Porous Media Flow 1		n ▼ comp2.chem.D_CH4_H20				
 Fluid Properties 1 Initial Values 1 Axial Symmetry 1 Wall 1 Porcus Medium 1 Inlet 1 Outlet 1 Multiphysics Multiphysics Multip Perfectly mixed model \circo Study 1: Perfectly mixed model \circo Study 2: Space-dependent study \circo Results 	$ \begin{array}{c c} \text{WCPH} & \text{WH2D} & \text{WaxWell-Steal} \\ \end{array} \\ \hline \\ \text{Thermal diffusion coefficient} \\ D_{w}^{T} \\ D_{w}^{T} \\ D_{w}^{T} \\ 0 \\ D_{w}^{T} $	kg/(m-s) kg/(m-s) kg/(m-s) kg/(m-s) kg/(m-s)	Log Messages × Progr	ress Evaluation 3D		

Porous Medium Types


Porous Medium

Transport and reactions in pore space of solid matrix. Also transport along fractures in porous media and in unsaturated porous media.

Packed Bed


Porous catalytic particles in a fixed bed reactor. Models transport inside particles as well as in the bed macropores.

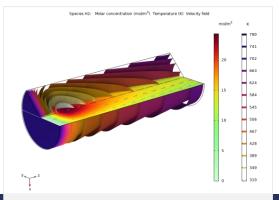
Porous Catalyst

Extended support for heterogeneous reactions, adsorption, and desorption in porous media structures.

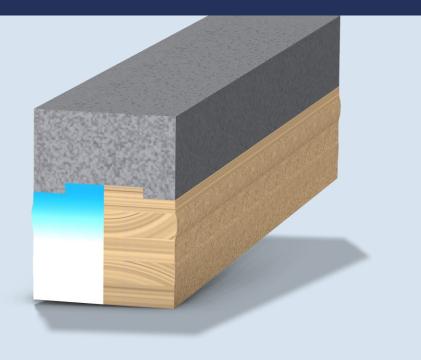
Chemical Reaction Engineering Module: Modeling Strategy

Name	CAS	Chemical formula	Database
carbon dioxide	124-38-9	CO2	COMSOL
carbon monoxide	630-08-0	CO	COMSOL
hydrogen	1333-74-0	H2	COMSOL
propane	74-98-6	C3H8	COMSOL
water	7732-18-5	H2O	COMSOL
Phases		State	
Name			

Perfectly Mixed System


- Type in the chemical equations
- Kinetics and material balances automatically formulated

Thermodynamic Properties


- Add a thermodynamic system
- Add compounds
- Match species

Generate Space-Dependent Model

- Select space dimension
- Select transport mechanism for chemical species, fluid flow, and heat transfer

Moisture Transport in Porous Media

Transport Mechanisms

Moisture moves through convection and diffusion, facilitated by the presence of both vapor and liquid states within the pores.

Liquid Water

Held by adsorption (vapor molecules adhering to pore walls) and capillarity (pressure difference between liquid and gas phases).

Moisture

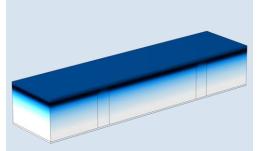
Hygroscopic and capillary regions based on the dominance of adsorption or capillarity, respectively, influenced by factors like relative humidity and pore characteristics.

Characterization

Moisture is characterized through sorption curves (for hygroscopic region) and retention curves (for capillary region), employing models like van Genuchten and Brooks & Corey.

State Variables

Relative humidity and capillary pressure are termed state variables, describing water's thermodynamic state in equilibrium between phases, governed by Kelvin's law.


Porous Matrix

Liquid saturation and moisture content are dependent on the structure, varying with factors such as porosity, pore size distribution, and material composition.

Moisture Transport in Porous Media

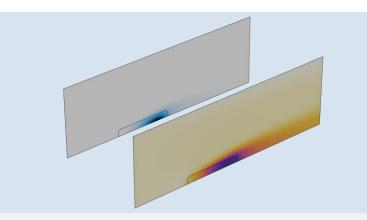
Hygroscopic Porous Medium

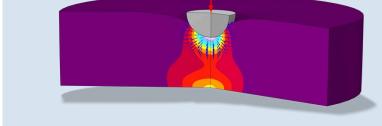
Moisture transport in a porous medium filled with liquid water and moist air by vapor diffusion and convection in moist air, and convection and capillary flow in the liquid phase.

Building Material

Moisture transfer through vapor diffusion and capillary moisture flows.

Specific equations for building materials under typical external conditions.




Porous Medium

Moisture transport in conjunction with deforming materials.

Accurate mass and energy conservation with large deformations.

Multiphysics Capabilities

Heat and Moisture

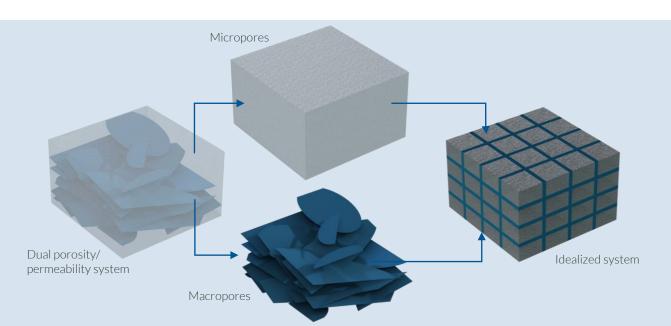
- Take into account heat and moisture storage, latent heat, and heat and moisture transport
- Relative humidity depends on temperature and pressure

Poroelasticity

- Compaction and swelling of saturated and unsaturated porous materials:
 - Biot: General framework, applicable to a wide range of porous materials.
 - Biphasic: Suitable for modeling the coupling between fluid flow and large deformations in hydrogels and soft biological tissues

Complex Porous Materials

Interconnected systems of fractures within rock formations.


DFNs provide a more realistic depiction of the interconnected fractures, their orientations, lengths, and aperture distributions.

Dual Porosity/ Dua Permeability Networks

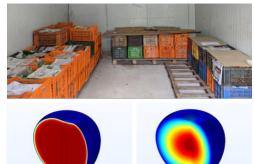
Flow in porous media by considering two distinct types of pore spaces offering a more accurate representation of complex geological systems.

Dual Porosity and Dual Permeability

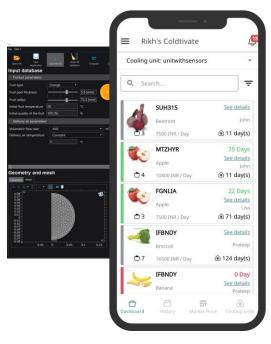
Macropores

- Highly conductive regions within a rock or geological formation that significantly impact fluid flow and transport
- Usually occupy only a small fraction of the whole system

Micropores


- Regions with low permeability occupying a large volume fraction of the whole system
- Contribute significantly to storage capacity within a geological formation

Forecasting Produce Shelf Life


Each year, approximately one-third of the food produced for human consumption worldwide is lost or wasted. To optimize the use of refrigerated food storage in developing countries, farmers and traders need to be able to predict the shelf life of fresh fruits and vegetables.

Forecasting Fruit Freshness with Simulation Apps © 2024 COMSOL. Research by Joaquin Gajardo and Thijs Defraeye, Empa, Switzerland. Minimizing post-harvest losses with limited refrigerated space available requires insight into how ambient temperatures directly influence the shelf life of fresh produce.

The EMPA team compiled a simulation app from their multiphysics models to provide data-driven forecasts on the freshness of produce in a cold room. Results from the simulation app are fed into a smartphone app.

The Coldtivate mobile app informs farmers and cold storage operators of the cooling and decay process of different types of produce in real time. The values shown in the app are recalculated every 6 hours based on the latest cold room temperature data.

In August 2022, the simulation-powered app was released to 17 cold rooms, serving more than 300 farmers, who are reporting a 20% increase in their incomes and reduction of their post-harvest food losses.

Empa and its partners are now working to expand Coldtivate's impact.

SIMULATION APP

A leading global cement supplier provides its customers with a standalone simulation app that predicts curing times for concrete casting at construction sites. Since launch, it has been downloaded 1500 times!

SIMULATION APP HETT²²

- The app user chooses the concrete and cement mixture based on weather and construction structure
- Uses data from weather stations to determine the conditions for the curing process in real time
- The output from the simulation app:
 - Predicts temperature, degree of curing, and structural properties
 - Warns if the structural integrity of the structure is at risk

Developed by Deflexional AB (COMSOL Certified Consultant)

File Home			HETT ²²	- 0
	Compute Geometry Mesh Graph	Colormap Time M • Development •	Image: Second	Preferences vvvs Settings
Menu	Results		Graphics 1 Graph - Temperature	C Graphics 2 Graph - Strength
Construction	< Temperature		🔍 🔍 🔍 ▼ 🔁 🛄 🗮 🔲 🔯 🚔 😤 Settings	🔍 🔍 🔍 🔻 🕀 🎹 🧱 🔲 🙍 🖶 😓 Settings
Concrete	 Form Removal - Side 1 		Temperature (*C)	Strength (MPa)
े Time 🖁 Weather Condition	Form removal at: Time of form removal: Form Removal - Side 2	Strength = 15 MPa 130 h		
Measures	Form removal at: Time of form removal:	Strength = 15 MPa 130 h		Max Average Min 10 Max
Cover	 Results During the Simulation 			Side 1 Average
Pipe E Heating Cable Measurements	Temperature, max: Temperature, min: Temperature difference, max: Final strength, average:	42.8 °C 15.0 °C 8.03 °C 16.0 MPa		Side 4 6 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
(+) Temperature	 Notifications and Warnings 		14 L i i i i i i 0 20 40 60 80 100 120 14 Hours (h)	40 160 0 20 40 60 80 100 120 140 160 Hours (h)
⊘ Results	 The results give no warnings. 		Max V Average V Min V Side 1 V Side 2 V Side 3 V Side 4	Max V Average V Min
			Graphics 3 Colormap - Temperature •	Graphics 4 Colormap - Strength
			🔍 Q, (Ω, ▾ 🕀 🗐 🔲 👩 🚍 🛜 Settings	Q, Q, ∰, ▼ 🔁 🗐 🔲 🔂 🚱 😤 Settings
			Time=168 h Temperature (*C)	Time=168 h Strength (MPa)
				22.2 22 22 21.6 21.4 21.2 21 20.8 20.6 20.4 20.2
			The simulation is finalized.	

Concluding Remarks

Extensive Modelling Features

COMSOL Multiphysics[®] offers user-friendly tools for modeling porous media flow, heat and solute transport, and additional phenomena, such as poroelasticity.

Ready-Made and User-Defined Multiphysics

Multiphysics interfaces are available for nonisothermal porous media flow, multiphase transport, reacting flow, and poroelasticity. It is also straightforward to define arbitrary couplings.