## LES simulation of the flow around porous bluff bodies

Blanka Ledvinková Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences.



#### porous barriers on bridge decks

- protection vehicles from cross-wind
- prevention of sand accumulation
- ancillary structures, but strong effect on the the bridge aerodynamics



#### wind tunnel measurements

U-profile specimen

air velocity  $u_0 = 14$  m/s Re=1.4e<sup>5</sup> turbulent flow

impact angle  $\alpha = \langle -15, 15 \rangle^{\circ}$ 

# Comparison of 2D SST RANS simulations with measurements

#### 2 modelling attemps



#### detailed geometry

Resistance coefficient  $K=K(\varepsilon)$ 



pressure jump



## 3D LES simulation –computational settings



### Modeling of porous zones- volume force



**Drag coefficient**  $c_D = c_{Dw} + c_{Dp}$ 

 $c_L = c_{Lw} + c_{Lp}$ 

Xu,M., Patruno,L., Lo, Yuan-Lung, de Miranda, S. (2020) On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step. J. Wind Eng. Ind. Aerodyn. 207

 $u_x$ ,  $u_y$ ,  $u_z$  -velocity field  $\rho$  –air density

 $\tau$ - wall shear stress S- reference area  $u_{in}$ -inlet velocity



## 3D LES simulation -computational mesh

Hexahedral mesh, hybrid mesh in x-y plane, structured along z dimension- number of equidistant layers  $n_z=24$ 



meshing of computational domain

mesh around rectangle

detail of mesh in boundary layer

### 3D LES simulation- results I.







#### **Experimental results**

*c*<sub>*D*</sub>=1.33  $c_L = -0.34$ 

### 3D LES simulation- results II.



## Conclusions

- simulations of the air flow around u-profile having porous barrier were performed in Comsol Multiphysics software
- pressure jump attempt based on the opposite volume force was used
- obtained drag and lift coefficients are in qualitative agreement with measured data
- parametric study including various angles of attack and various porosities is planned