Guide to Electromagnetic Compatibility Analysis Using Simulation (EMC)

Matouš Lorenc lorenc@humusoft.cz

Schedule

- 1. Motivation: EMC/EMI problem
- 2. Electromagnetic fields in COMSOL Multiphysics
- 3. Inductive and capacitive phenomena
 - DEMO: Electromagnetic shielding tutorial
- 4. Wave radiation
 - DEMO: EMC/EMI of a circuit board

EMC/EMI Testing

- Electromagnetic compliance and interference testing is an integral part of device R&D process
- In critical components, the EMC/EMI is as important as the device primary function performance
 - Aerospace
 - Automotive
 - Biomedical devices
- Required for regulatory processes

Why Electromagnetic Shielding?

- Protect human life and ensure operation of technical systems?
- Reduce unwanted emission of EM fields
- Reduce susceptibility to interference
- Reduce fields to prevent breakdowns

Faraday cage made up of wires at the Sphinx Observatory in Switzerland

What Is Shielded?

- Power cables
- Transformers
- Medical and Lab devices like MRI
- Comm systems
- Superconducting circuits
- Passengers in aircraft
- Hard drives
- Microwave ovens
- Earth

Faraday cage made up of wires at the Sphinx Observatory in Switzerland

Types of Shielding

- Basic types of shielding in power systems
 - Electrostatic shielding (Faraday's cage)
 - Magnetostatic shielding
 - Electromagnetic (inductive) shielding
- Other types of shielding
 - Frequency selective surfaces
 - Cloaking devices
 - Dielectric mirrors
 - Antireflective coatings

MRI RF shielding

Typical Shielding Materials

- Metal foils
- Metal screens
- Metal foams
- Metallic or semiconductive paints
- Mu-metal
- Permalloy
- What they have in common?

Typical Shielding Materials

- Metal foils
- Metal screens
- Metal foams
- Metallic or semiconductive paints
- Mu-metal
- Permalloy
- What they have in common?
 - Thin layer coating a several orders larger area

Thin Layer Modelling in COMSOL

- Domain-based modelling
 - Swept and Boundary Layer mesh operations
- Impenetrable boundary conditions
 - Perfect Electric Conductor/Floating Potential
 - Electric/Magnetic Insulation
- Penetrable boundary conditions
 - Electric/Dielectric/Magnetic Shielding
 - Thin Low Permittivity/Permeability Gap
 - (Layered) Transition Boundary Condition
 - Contact Impedance

?

File Home Definitions Geometry Materials Physics Mesh Study Results Developer

6

The COMSOL® Software Product Suite

COMSOL MULTIPHYSICS®

The platform product. Understand, predict, and optimize physicsbased designs and processes with numerical simulation.

Distribute simulation

applications created with

COMSOL Multiphysics.

DEPLOYMENT PRODUCTS

- COMSOL Compiler[™]
- COMSOL Server™

ADD-ON PRODUCTS

ELECTROMAGNETICS

- AC/DC Module
- RF Module
- Wave Optics Module
- Ray Optics Module
- Plasma Module
- Semiconductor Module

FLUID & HEAT

- CFD Module
 - Mixer Module
- Polymer Flow Module
- Microfluidics Module
- Porous Media Flow Module
- Subsurface Flow Module
- Pipe Flow Module
- Molecular Flow Module
- Metal Processing Module
- Heat Transfer Module

STRUCTURAL & ACOUSTICS

- Structural Mechanics Module
 - Nonlinear Structural Materials Module
 - Composite Materials Module
 - Geomechanics Module
- Fatigue Module
- Rotordynamics Module
- Multibody Dynamics Module
- MEMS Module
- Acoustics Module

CHEMICAL

- Chemical Reaction Engineering Module
- Battery Design Module
- Fuel Cell & Electrolyzer Module
 - Electrodeposition Module
- Corrosion Module
- Electrochemistry Module

MULTIPURPOSE

- Optimization Module
- Uncertainty Quantification Module
- Material Library
- Particle Tracing Module
- Liquid & Gas Properties Module

INTERFACING

- LiveLink[™] for MATLAB[®]
- LiveLink[™] for Simulink[®]
- LiveLink[™] for Excel®
- CAD Import Module
- Design Module
- ECAD Import Module
- LiveLink[™] for SOLIDWORKS®
- LiveLink[™] for Inventor[®]
- LiveLink[™] for AutoCAD[®]
- LiveLink[™] for Revit[®]
- LiveLink[™] for PTC[®] Creo[®] Parametric[™]
- LiveLink[™] for PTC[®] Pro/ENGINEER[®]
- LiveLink[™] for Solid Edge[®]
- File Import for CATIA® V5

COMSOL

Electromagnetic Fields in COMSOL Multiphysics

Low Frequency Fields: Inductive and Capacitive Effects

Electrostatic Shielding: Faraday's Cage

- External electric field influences surface charges, creating a compensating field
- Perfectly conducting materials can be simulated by Floating Potential boundary condition
- Highly conducting materials can be simulated by Electric Shielding boundary condition
- Highly resistive materials can be modeled with the Contact Impedance boundary condition

DEMO: Electrostatic Shielding

- Shielding the box interior from 1 [kV] static potential
- (Im)penetrable boundary condition
 - Floating potential vs Electric shielding

🍳 | 🗅 📂 🔙 😣 トゥ・ペッ 咱 伯 田 🗴 🔣 🔍 • |

shielding_empty.mph - COMSOL Multiphysics (Trial version)

– o ×

Magnetostatic Shielding

- Materials with a very high magnetic permeability provide a low reluctance path so that the flux can be channeled around the objects
- Dedicated boundary conditions
 - Magnetic Shielding
 - Thin Low Permeability Gap
- Sources of the magnetic field can be:
 - Background field (Earth's magnetic field)
 - Permanent magnet
 - Ideal dipoles
 - Current-carrying conductors

DEMO: Magnetostatic Shielding

- Background Earth's magnetic field
 - Reduced field formulation
 - 50 μT
- Magnetic Shielding boundary condition for stationary fields only
- Linear vs. nonlinear magnetic shielding material

🍳 | 🗅 📂 🔙 🔌 トゥ・ペッ 🏛 🏛 🏛 🎆 💐 🔍 • |

shielding_empty.mph - COMSOL Multiphysics (Trial version)

×

D

File Home Definitions Geometry Materials Physics Mesh	Study Results Develope	r.						2
A Pi a= Variable Application Model Builder Manager Component Add 1 • Component • Component • Pi Pi a= Variable Parameters • Pi Parameters	• ^a Variable Utilities • • • er Case	Build All Part Libraries	Add Material	Select Physics Interface -	Build Mesh 1 •	Compute Select Add Study +	Elect Plot Group + Add Plot Group + Add Predefined Plot	Windows •
Workspace Model De	finitions	Geometry	Materials	Physics	Mesh	Study	Results	Layout
Workspace Model Model Builder ← → ↑ ↓ ♥ It + It	Geometry Materials Settings • Geometry Build All Label: Geometry 1 • Units • Vnits Scale values when changing units Length unit: m • Angular unit: • Degrees • • Advanced Geometry representation: • CAD kernel • • Design Module Boolean operations Default repair tolerance: Automatic Ø Build new operations automatically •		S Progress Log Table ×				Layout	
			May 21, 2024, 11:49 Awij complete me [May 21, 2024, 11:50 AM] Number of de [May 21, 2024, 11:51 AM] Solution time [May 21, 2024, 11:53 AM] Number of de [May 21, 2024, 11:53 AM] Solution time [May 21, 2024, 11:55 AM] Solution time [May 21, 2024, 11:55 AM] Solution time [May 21, 2024, 12:02 PM] Opened file: C	sn consists of 191 egrees of freedom (Study 1): 37 s. egrees of freedom (Study 1): 31 s. egrees of freedom (Study 1): 63 s. (1 C:\Users\matou\Sy	90 domain elements, 5528 bo n solved for: 228672. n solved for: 230508. n solved for: 230508. minute, 3 seconds) mologyDrive\HUMUSOFT\KC	oundary elements, and 950 o M2024\EMC\shielding_emp	eage elements.	

Electromagnetic Shielding

- The magnetic field variation generates eddy currents in conductive layers that act to reduce the applied field
 - The shielding efficiency of conductors is frequency dependent and related to the skin depth
- Transition boundary condition: lossy, skin-depth-dependent penetration
- Impedance boundary condition: lossy, impenetrable
- **Perfect electric conductor (PEC)**: lossless, impenetrable

DEMO: Electromagnetic Shielding

- Shielding factor calculation
 - High permeability vs high conductivity shielding material comparison
 - 0.1 to 1000 Hz
- Transition Boundary Condition
- Induced surface current density visualization

Layered Transition Boundary Condition

- Combining highly conductive layers with high permeability materials in shielding
- Gold plated copper of circuit board trace
- Defined by Layered Material and Layered Material link features
 - Material composition
 - Layers' thickness
 - Number of virtual mesh elements per layer
 - Layer rotation (anisotropic material properties)

Cable Tutorial Series

- 3D twisted cable modelling
 - No longer a task for dedicated codes run on large clusters
 - Increasing efficiency with a sufficiently large safety margin
 - Numerical models made with COMSOL Multiphysics[®] complement and replace traditional methods (IEC)
- Includes capacitive, inductive and thermal effects
- Online cable resources:
 - Cable Tutorial Series
 - <u>Submarine Cable Analyzer</u>

High Frequency Fields: Wave Radiation Problem

Shielding in RF: Cable Shield

- "Thin layer" type boundary condition
- Reduced computational demands
- Enables efficient simulation of intricate shielding geometry types using a streamlined boundary condition
 - Braided shields
 - Perforated shields

DEMO: EMC/EMI of a Circuit Board

- Emission and immunity analysis of a circuit board
 - 1. Emission: One of the lines is excited and the crosstalk to adjacent line is calculated together with leaked power
 - 2. Immunity: External antenna impact on circuit board
- A brief dive into postprocessing magic ★

?

File Home Definitions Geometry Materials Physics Mesh Study Results Developer

Designing EMC/EMI Testing Laboratory with COMSOL

Antennas for EMC/EMI Testing

Anechoic Chamber FEM Model

COMSOL CONFERENCE 2024 FLORENCE

October 22-24

Connect with industry leaders at the modeling and simulation event of the year.