Original talk title: The influence of sample's shape on Poisson's ratio

David Vokoun *FZU-Institute of Physics of the Czech Academy of Sciences *Exergyn, Zdiby

Changed talk title: Modeling IPMC cantilever actuator

D. Vokoun*, Q.S. He**, L. Heller*, M. Yu**, Z.D. Dai** *FZU-Institute of Physics of the Czech Academy of Sciences **NUAA

IPMC: Electro-active polymers controlled using low voltage

Nafion: As shown in figure below, clusters of diameter 4 nm are formed due to the reorientation of a hydrophilic side chain and hydrophobic backbone.

Force

cation

Source: D. Vokoun, Q. He, L. Heller, M. Yu, Z. Dai. Modeling of IPMC cantilever's displacements and blocking forces. Journal of Bionic Engineering 12 (2015) 142-151.

The model can work with Nafion with various thicknesses and Young's moduli.

The **purpose** of the model is simulation of **IPMC's tip movement** and simulation of **blocking force**.

Poisson-Nernst-Planck (PNP) equation system

The **PNP system** is strongly non-linear. The key variables of the PNP system are concentration of the mobile ions, c, and electric potential, φ .

Then, **diffusion** and **electromigration** of mobile ions in the Nafion domain is described by flux **J**

 $\boldsymbol{J}=-D\nabla \boldsymbol{c}-\mu \boldsymbol{F}\boldsymbol{c}\nabla\phi,$

where D, μ , F are the diffusivity, the mobility of free ions, and the Faraday constant, respectively.

Then, the Nernst Plank equation has the following form:

$$\frac{\partial c}{\partial t} + \nabla \boldsymbol{J} = \frac{\partial c}{\partial t} - \nabla \left(D \nabla c \right) - \nabla \left(\mu F c \nabla \phi \right) = 0.$$

The Poisson equation has a form

$$-\nabla^2 \phi = \frac{F\rho}{\varepsilon} = \frac{F}{\varepsilon} (c - c_0),$$

where ρ , ϵ and c0 are the charge density, the Nafion's electric permittivity and the constant concentration of Nafion's SO₃⁻ anions, respectively.

in the **domains of metal electrodes** the <u>Poisson's</u> <u>equation</u> transforms to $\nabla^2 \phi = 0$

Boundary conditions of the 3D PNP system we require the Neumann boundary condition $d\phi/dn = 0$ (n is the normal vector to the boundary)

Furthermore, we require the **Dirichlet boundary conditions** $\phi = V$ and $\phi = 0$ on the respective outer surfaces of the electrodes.

In our work, potential V is periodic, varying in time as:

 $V = 3 \cdot \sin (0.2\pi \cdot t).$

As for concentration of free cations, c, we need to fulfil the Neumann boundary condition dc/dn = 0 on all the boundaries of the Nafion domain. The initial condition for concentration c is c=c0 at time t=0.

Concentration-stress coupling

How stress relates to concentration and why?

- As cations in the Nafion in an electric field are moving, they take molecules of water with them.
- Changes of pressure inside \rightarrow change of strain \rightarrow bending
- We can decompose the total stress tensor into deviatoric and isotropic parts

$$\sigma_{ij}^{tot} = (\sigma_{ij}^{tot} - \frac{1}{3}\delta_{ij}\sigma_{kk}^{tot}) + \frac{1}{3}\delta_{ij}\sigma_{kk}^{tot}.$$

The hydrostatic pressure of the solvent due to the concentration change contributes to the isotropic part of the total stress tensor

$$\frac{1}{3}\sigma_{kk}^{tot} = \frac{1}{3}\sigma_{kk} - p_c,$$

where p_c is the hydrostatic pressure

$$\frac{1}{3}\sigma_{kk} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$
 is the isotropic part

Pressure $p_c = 0$ in the electrode domains. For the Nafion domain, we assume a linear relationship between the pressure p_c and concentration of free cations, c

 $p_c = \beta_N \cdot (c - c_0)$ β_N is a constant coefficient

Structural mechanics

Connecting the **Newton's law of motion** and the **force balance**, the structural mechanics of cantilever is described as:

$$\nabla \boldsymbol{\sigma}^{tot} + \boldsymbol{F}^{\boldsymbol{V}} = \rho_i \frac{\partial^2 \boldsymbol{u}}{\partial t^2}$$

where σ^{tot} , is the total stress tensor,

F^V, is the force vector per volume area,

 ρ_i is the mass density of respective material (*i*={*N*,*E*1,*E*2})

and u = (u, v, w) is the **displacement vector**,

Because of the **slow actuation** in our experimental setup, we neglect the **dynamic term** of the right side of Eq.+neglecting volume force

So
$$\nabla \boldsymbol{\sigma}^{\text{tot}} = 0$$
.

We assume that Nafion and the electrodes are **elastic isotropic** materials either one characterized by two elastic constants, **Young's modulus** and **Poisson's ratio** denoted as E_N , v_N , E_E , v_E , respectively. According to the **Hooke's law**, we have:

$$\sigma_{ij}^{tot} = 2G_i \varepsilon_{ij} + \left[(3K_l - 2G_l)(\frac{1}{3}\varepsilon_{kk}) - p_c \right] \delta_{ij},$$

Boundary conditions for the equations of structural mechanics ¹³

- We have to distinguish two cases: (i) the boundary conditions for a free movement of the IPMC's tip.
- (ii) the boundary conditions for the constrained IPMC's tip. In this case we simulate the blocking forces.
- **Free tip case:** we require u=v=w=0 at clamped part of IPMC cantilever (Dirichlet boundary conditions).
- <u>Otherwise</u>, we require $n_1\sigma_{i1} + n_2\sigma_{i2} + n_3\sigma_{i3} = 0$ for i=1, 2, 3 (the Neumann boundary conditions) at the other IPMC boundaries where $\mathbf{n} = (n_1, n_2, n_3)$ is the **normal vector** to the boundary.
- **blocking force measurements:** We apply the conditions of the free IPMC's tip, except the boundary condition at the **place where the force sensor is placed** (the cantilever's tip). In the area of force measurement we require v=0 (the Dirichlet condition).

Model parameters and input data

Variable/constant	Value and unit
Diffusivity, D	$1 \times 10^{-10} \text{ m}^2 \cdot \text{s}^{-1}$
Mobility at room temperature, μ	$2.9 \times 10^{-15} \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1}$
Faraday constant, F	96485.337 C·mol ⁻¹
Dielectric permittivity of Nafion, ϵ	$2.8 \times 10^{-3} \text{F} \cdot \text{m}^{-1}$
concentration of SO ₃ - anions, c_0	$1000 \text{ mol} \cdot \text{m}^{-3}$

There are various values of E_N (Young's modulus of Nafion) and t_N (thickness of Nafion layer) in Table corresponding to the five manufactured IPMC samples. The Pt Young's modulus not determined now

Variable/constant	Value and unit
Young's modulus of Nafion, E_N	0.22 GPa, 0.63 GPa, 0.76 GPa, 0.82 GPa, 0.83 GPa
Poisson ratio of Nafion, v_N	0.49
Young's modulus of Pt electrodes, $E_{\rm E}$	various values in the range 1 GPa – 5 GPa
Poisson ratio of Pt electrodes, $v_{\rm E}$	0.38
Length of the free part of the IPMC cantilever, <i>L</i>	2.5 cm
Length of the fixed part of the IPMC cantilever, $L_{\rm fix}$	5 mm
Thickness of the Nafion layer in the IPMC cantilever, t _N	0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm, 0.80 mm
Thickness of the Pt layer in the IPMC cantilever, $t_{\rm E}$	10 µm
Depth of the IPMC cantilever, wd	5 mm

About realization of the simulation:

We use FEM implemented in Comsol software and work with the general form PDE modules of Comsol software.

A special care has to be taken when choosing and distributing a mesh for finite elements. The finest mesh network has to be formed in the places with the highest change of concentration c.

The **Scheme** of the **distributed mesh** employed with a dense mesh distribution at the interface Nafion-Electrode

The most efficient strategy for the computation:

Nafion
Layer
Pt layer
Mechanics (SM) using the 1D PNP
solution as an input for the 3D
problem.

The diagram of the simulated cation concentration, **c**, in dependence on the distance from the **Pt cathode** for various times. The insets show the **cation concentration** in the regions close to the electrodes.

17

Data comparison

Conclusion

Not bad agreement between the simulated and measured maximum displacement and blocking force

The support of the Czech Science Foundation under grant 22-14387J acknowledged.

