INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

STRUCTURAL MODEL OF HIGH-TEMPERATURE VACUUM-SEALING FLANGE

P. BARTOŇ¹, J. PŘEVRÁTIL¹, K. PATOČKA

1) Institute of Plasma Physics of the CAS, Prague, Czech Republic

- COMPASS-U Tokamak
- Vacuum vessel, resilient metal seals
- Model definition
- Results

TOKAMAK COMPASS UPGRADE

- TOKAMAKs are scientific devices to explore nuclear fusion
 - fusion of hydrogen isotopes (D+D, D+T)
 - hopefully future energy source of mankind!
- At IPP, we build a new tokamak called **COMPASS-Upgrade**
 - Expected time of first run ~ 2026
 - Most important parameters
 - Toroidal mag. field 5 T
 - Plasma current
 - Major radius
 - Minor radius

5 T	2.1 T
2 MA	0.35 MA
R = 0.894 m	0.56 m
a = 0.27 m	0.23 m

Old COMPASS

Fig. 1.: ³/₄ Section of tokamak COMPASS-U. Position of plasma is indicated by **pink elipse**.

COMPASS-U VACUUM VESSEL

- COMPASS-U vacuum vessel has a lot of (non-circular) ports
- Moreover, seals are required
 - To seal ultra-high vacuum (leak rate < 10-9 Pa.m3/s)
 - Withstand high temperature (500 °C)
- Only feasible option is to use resilient metal seals!

Fig. 2.: Illustration of resilient metal seals working diagram, illustration of seal cross-section © Gesellschaft für Dichtungstechnik mbH

Fig. 3.: Render of COMPASS-U vacuum vessel, ports visible

METAL SEALED FLANGES

- What are the challenges?
 - Huge compression force required! (~350 N/mm)
 - Only small springback allowed (~0.05 mm)
 - Flanges are **inverted** (bolts inside, seal outside) and not blind
 - Different materials all-around

Bolts and flanges are on the edge of possible, therefore the design optimization and verification is crucial!

Fig. 4.: Different resilient metal seals (Parker Hannifin)

FLANGE MODEL

BOLT BEAM MODEL

- Bolts are modelled as a beams
- Default multiphysics beam-solid coupling doesn't support thermal expansion.
- Fortunately, COMSOL includes **Rigid connector**, which has much more settings!

Fig. 6.: Solid-beam connection node with resulting non-physical stress

Fig. 7.: Rigid connector node with thermal expansion subnode set up

Fig. 8.: Used beam element in the bolt hole

SEAL NONLINEAR MODEL

- Main working mechanism of the resilient metal seal is the plastic deformation.
- We don't have the Nonlinear Structural Material Module!
- Just use the "External Materials" node!
 - Available in basic Solid mechanics module
 - Bit harder to use (you need to compile you own DLL)
 - But! COMSOL has a nice tutorials! [1] [2]

Settings - External Material					
Label: External plastic	• N	Aaterial Contents			
Name: extmat1	**	Property	Variable	Value	Unit
 Library for Windows, 64-bit 		Density Metarial model are set of	rho (ass1 as	8250	kg/m³
Discard		Extra library function string argume	{pari, p args	{p_emoa, p_poisson, p_sigysu, p_e iiso}	Pa
Library imported into model	Fig. 10.: External material parameters setup				
Filename: comsol_plastic.dll (Aug 23, 2022, 5:29:53 PM)					
Fig. 9 · External material node setup					

[2] https://www.comsol.com/blogs/how-to-implement-elastoplasticity-in-a-model-using-external-materials/

Fig. 11.: Seal testing submodel (to verify external material)

Stress (MPa)

Fig. 12.: Resulting stress-strain relation from the submodel.

•

MODEL RESULTS

Fig. 13.: Resulting stress distribution in the flange and port, @300 K

- How to read the seal deformation? •
 - Both sides move, we need to subtract. ٠
- Linear extrusion is here to help! •
 - Part of the nonlocal couplings family •
 - It maps entities onto each other ٠
- After setup, you can just do •
 - deff = w linext1(w)•

Linear Extrusion 1 (linext 1)

11 Identity, Descendent, Date 14 /4

Fig. 15.: Seal compression along the port, @300 K

MODEL RESULTS

CONCLUSION

- We have optimized and verified the high-temperature flange design
 - Required bolt preload ~15 kN
 - Maximal springback reached < 0.05 mm
 - Bolt stress < 600 MPa

Fig. 16.: Tokamak COMPASS-U render