Latent Factor Intensity Model	
Credit Risk Modelling	Latent Factor Intensity Model
Boril Sopov	
Introduction to Credit Risk Management	Credit Risk Modelling
Latent Factor Intensity Model	Boril Sopov
Implementation	·
Application	
	May 22, 2011

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

Application

1 Introduction to Credit Risk Management

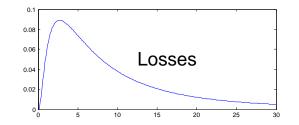
2 Latent Factor Intensity Model

3 Implementation

Credit Risk Management

Latent Factor Intensity Model

Credit Risk Modelling


Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- Oldest risk type
- Deterioration of clients credit quality
- Charachterised (amongst other) by Probability of Default
- Probability of Default: Probability a client will be due 90 days
- On a client level easy: PD models Probit & Logit
- Modern credit risk manage the whole portfolio
- Portfolio credit losses are not normally distributed

Latent Factor Intensity Model 1/1

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Factor Intensity Model

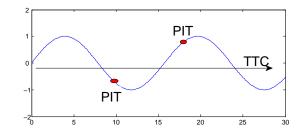
Implementation

- Portfolio view migration matrices
- Each credit event for each company is modelled as an exponential random variable with some intensity
- Each rating class have its own intensity → we assume some degree of homogeneity for companies in the rating classes
- We look at downgrades, upgrades and defaults
- We have three sources of uncertainty: what type of rating event happens, when it happens and which company it is

Latent Factor Intensity Model 1/2

Latent Factor Intensity Model

Credit Risk Modelling


Boril Sopov

Introduction to Credit Risk Management

Latent Factor Intensity Model

Implementation

- With the data about our historical portfolio behaviour, we try to pick up common tendencies and movements in credit events
- Period of downgrades and periods of upgrades
- This is assumed to be driven by a unobserved factor latent factor

Implementation

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- No ready made solution → Matlab :D
- Number of events defines the length of the sample
- The likelihood function contains a high dimensional (up to 1000) integral with no analytical solution
- The likelihood function needs to be calculated many times in the optimisation routine and each time we need to numerically compute the integral
- Efficient importance sampling by Richard and Liesendfeld (2003) is employed
 - Initial 'lame' implementation took 17h to estimate
 - Using 4-core CPU and Parallel computing toolbox the time is about 1h (UvA, NL)

Efficient Importance Sampling 1/2

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- The high dimensional integral needs to be evaluated numerically unconditional Monte Carlo integration \rightarrow highly inefficient and slow
- We would like to simulate parths 'close' to the real unobserved process - Contradictio in adjecto?
- We can 'calibrate' the simulation density (importance sampling density - conditional on the date set) to be 'close' to the real one
- The EIS contains iterative procedure to get close to the real density using extremely fast least square minimization
- The trick is that the log's of elliptical densities (for example normal density) are linear in its coefficients - the difference between the 'real' and the 'approximating' loglikelihood is minimized

Efficient Importance Sampling 2/2

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- The video shows the iteration steps with the model parameters known
- The initial paths are almost unconditional and you can see how the 'guesses' are all over the plot
- EIS converges in a few steps (cca 14) very close to the real unobserved factor

Application - Macroeconomic Factors

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- So we have the model we estimated the parameters
- We know the latent factor and we can try to find its relation to macroeconomic factors - GDP growth, CPI, interest rates etc.
- We can include these directly in the model or we can extract the latent factor and find the relationships ourselves - Vector autoregression (VAR) models
- Knowing the relation with the macroeconomy, we can perform specific stress tests - e.g. what would be the loss if the unemployment rose by 3%
- We can also perform general stress tests simulate the macroeconomy and see the losses

Application - Long- & Short-term Ratings

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

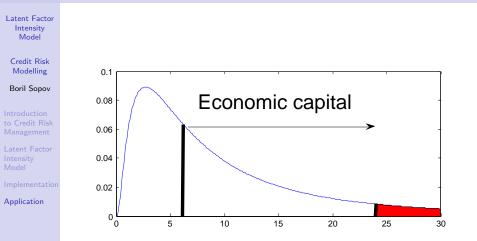
- Due to the fashion the model is built on the credit events
 / migrations the natural outcome is a migration matrix
- Point-in-time PD actual probability of default assessed using all information including the state of economy (boom or bust) about a client
- Through-the-cycle Ratings rating of a client 'averaged' over the whole economic/credit cycle
- Hard to determine with ordinary credit rating models
- Quite easy with our LFIM for TTC take the 'average' latent factor and voila we have the TTC migration matrix
- For PIT take the actual/forecasted value of the latent factor and generate the migration matrix for a desired time horizon - 1y: quite common practice, multiyear: IFRS 9

Application - Economic Capital 1/2

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov


Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

- We have the model and its links to the economy
- We can simulate all possible states and assess losses in each state
- Than we order them by severity
- The difference between the mean loss and some given percentile is the Economic capital
- $\blacksquare \rightarrow$ some sort of reserve a bank holds against these losses

Application - Economic Capital 2/2

The end Latent Factor Intensity Model Credit Risk Modelling Boril Sopov Thank you! Time for some questions

Implementation

References

Latent Factor Intensity Model

Credit Risk Modelling

Boril Sopov

Introduction to Credit Risk Management

Latent Facto Intensity Model

Implementation

Application

Efficient importance sampling

 Liesenfeld, R., Richard, J.F., 2003, Univariate and multivariate volatility models: estimation and diagnostics, Journal of Empirical Finance 10, 505-531.

Latent factor intensity model

- Koopman, S. J., Lucas, A., 2008, The multi-state latent factor intensity model for credit rating transitions, Journal of Econometrics 142 (2008) 399–424
- Koopman, S. J., Kraussl, R., Lucas, A., 2009, Credit cycles and macro fundamentals, Journal of Empirical Finance 16 (2009) 42–54