

CONSTRUCTING FORWARD CURVES IN ENERGY MARKETS

June 2013

Tereza Klášterecká Trading

DEFINITION OF POWER AS A TRADABLE COMMODITY

E

- Power is traded in MWh
- Minimum traded unit is 1MWh in a single hour
- Typically, power is structured in certain standardized forward/futures contracts
 - Delivery
 - Load Profile
 - Country
 - Settlement: financial/physical

LOAD PROFILES

Single hours

- •Base all day
- •Peak working days 8:00 to 20:00
- •Off-peak = base peak
- •Morning off-peak 0:00 to 8:00
- •Evening off-peak 20:00 to 0:00

DELIVERY

Hour, Day-Ahead, Workdays, WeekendWeek, Month, Quarter, Season, Year

Example: Day ahead settlement

FORWARD CURVES AGGREGATE TRADED PRODUCTS

EXAMPLE

•As delivery approaches, power in "hour 2" of 10th Feb 2014 can be traded as part of different standardized products

- Calendar Year 2014
- Q1 2014
- Feb 2014
- Week 7 2014
- Day 10-Feb-2014
- Individual hour

- USAGE: valuation of portfolios of products & non-standard diagrams & modeling of the assets (power plants, gas storages,)
- USERS: traders, risk management, analysts, etc.

EXAMPLE: PORTFOLIO VALUATION

Product	Delivery	Size
Q1	base	5
Jan	base	10
Feb	base	15
Q1	peak	5
Mar	peak	10

The total value of a portfolio can be calculated from the forward curve as

MWh * FW Curve

Value of example portfolio 1,533,885 EUR

REQUIREMENTS ON THE NATURE OF THE CURVES

- Aggregation of price data from all market traded products into a single curve/instrument
- Non-arbitrage across the curve
- Shaping the "flat" parts of the curve indexing
- Smoothening the curve eliminating "ugly" transitions

Example: EEX DE Power

THE RECIPE: BUILDING THE FORWARD CURVE

Building block	Challenge
1) Aggregation of market prices into a single forward curve	 If arbitrage exists, which products should be used to build the curve
2) Calculation of indexes	 How to calculate indexes – mean, median, trimmed mean, interpolation Which indexes to calculate How much historical data to use
3) Indexing the market curve	Conflicting indexesMarket price constraints
4) Smoothing the indexed curve	 Subjective – how smooth should the curve be Market price constraints
5) Automation	Implementation in existing infrastructure

EXAMPLE: USING QUADRATIC OPTIMIZATION TO SMOOTH FORWARD CURVES

- · Quadratic optimization is used to smooth the indexed curve
- The parameters in the objective function are weights of different intervals of smoothing
 - λ₁- step 1, next day
 - λ_2 step 7, next week
 - λ_3 step 30, next month
- The constraints are the market prices of the market products

min

$$\sum_{i=1}^{T} (x_i - C_i)^2 + \lambda_1 \sum_{i=2}^{T-1} (x_{i-1} - 2x_i + x_{i+1})^2 + \lambda_2 \sum_{i=8}^{T-7} (x_{i-7} - 2x_i + x_{i+7})^2 + \lambda_3 \sum_{i=31}^{T-30} (x_{i-30} - 2x_i + x_{i+30})^2$$

subject to

$$\Delta r = h$$

MATLAB IN ANALYTICAL INFRASTRUCTURE

