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Abstract 

The analytical model of a robot dynamics represents an important tool for both the 
analysis and the synthesis of robot control algorithms. Based on the Euler-Lagrange 
formalism, the contribution presents a MATLAB-SIMULINK dynamic model of the 
3-DOF anthropomorphic robot manipulator with revolute joints. A significant 
simplification of the model has been accomplished via the concentration of the mass 
of each link into its centre of gravity. 

1 Problem Description 
Robot manipulators represent a class of complex dynamic systems with extremely variable 

inner parameters (e.g. the radical variation of the inertia matrix elements within the manipulation 
process) as well as the intensive contact with the environment. An accurate control of such a complex 
system deals with the problem of parametric uncertainty, the natural and technological limitation of 
the signals and variables, and the mutual interaction among the kinematic chain components. The 
direct implementation of control algorithms in the control system of a real manipulator is impossible 
without a preceding thorough verification of the robot behavior using the correct dynamic model. 

Generally, for any mechatronic system, two different approaches to the dynamic model creation 
are possible – the Newton-Euler and the Euler-Lagrange formalisms [1]. Specifically in the field of 
robot manipulators, the first one starts with the description of each robot link motion using the 
Newton’s laws. Then, using the forward-backward recursion, the coupling among the links is 
established. The second one treats the robot as a whole, taking its kinetic and potential energy into 
account. Nevertheless, the results of both methods are equivalent. In the author’s view, the Euler-
Lagrange formulation gives a more compact and direct methodology of the dynamics analysis. 

The kinetic energy of any moving material body is given as the quadratic function of both the 
velocity (the change of position, i.e. translation) and the rotational velocity (the change of orientation, 
i.e. rotation) [2]. One of the steps in a common simplified approach to the physical object description 
is the concentration of its mass to the centre of gravity. Thus, the object is represented by a mass point 
which motion is fully described by the velocity vector tangential to the trajectory of the motion. This 
simplification eliminates the change of orientation from the solution. 

The tangential velocity vector of any mass point can be derived from its position vector with 
respect to a common coordinate system. To get the position vector of any point of the manipulator 
kinematic chain, a coordinate frame of each joint should be established. Subsequently, the 
homogeneous transformation among the frames gives the position vector as a function of the joint 
variables. 

2 Kinematics of the 3-DOF Robot Manipulator 
The kinematic chain of the 3-DOF robot manipulator can be seen in Figure 1. Let its rotational 

basis AB (length l1) with the revolute joint A be located in the vertical z0-axis of the common 
coordinate system (x0y0z0). The axis of the second revolute joint B is perpendicular to the z0-axis. The 
mass m2 of the second link BC (length l2) is concentrated in the centre of gravity M2. The axis of the 
third revolute joint C is parallel to the axis of the joint B. Similarly to the second link, the mass m3 of 
the third link CD (length l3) is concentrated in the centre of gravity M3. The positive sense of the joint 
variables q1 (joint A), q2 (joint B) and q3 (joint C) is given by the right hand rule. 
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Figure 1: Kinematic chain of the 3-DOF robot manipulator 
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Figure 2: System of the joint coordinate frames 

In Figure 2, two individual coordinate frames are attached to any single link – the first frame is 
defined for the joint rotation and the second one for the constructional displacement. Thus, the 
homogeneous transformation matrix Ti-1,i between the neighboring i-1 and i frames represents the 
elementary rotational matrix Raxis(qi) or the translational one Taxis(li). The complete set of the 
transformation matrices related to Figure 2 is as follows 
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The position vectors of the mass points M2 and M3 in the appropriate joint frames follow from Figure 1 
and Figure 2 
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The resultant position vectors of the mass points M2 and M3 in the common coordinate system 
according to (1) and (2) are 
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3 Dynamics of the 3-DOF Robot Manipulator 
Dynamic model of the above specified type of manipulator has been derived using the Euler-

Lagrange formulation 

 i
ii

Q
q
L

q
L

dt
d

=
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
&

 (4) 

where L = K - P is the Lagrangian (K and P stand for the kinetic and the potential energy of the whole 
dynamic system respectively), qi denotes the generalized coordinate of the ith joint (i.e. the joint 
variable), Qi is for the generalized forces in the ith joint (for example driving torque iτ ). Note that the 
source of the unavoidable gravitational forces is the potential energy at the left-hand side of (4). 
Furthermore, to find a realistic model of the robot manipulator, the right-hand side of equation (4) 
should contain also the term corresponding with the dissipative forces, for example the viscous friction 

iiqB & . 

Kinetic energy of the moving mass point Mi is a function of the squared module of the 
tangential velocity vi which with respect to (3) can be obtained for the mass point M2 in the form 
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and for the mass point M3 in the form 
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It is evident, that the solution of expression (4) for the 3-DOF manipulator represents the system of 3 
second-order differential equations with variable parameters. This one can be written in the form of 
the 2nd order matrix differential equation 
 ( ) ( ) ( )qgqqcqBqqJ −−−= &&&& ,τ  (7) 
with the vector of generalized coordinates 3R∈q , the vector of generalized driving forces (torques) 

3R∈τ , the inertia matrix 33×∈RJ , the diagonal matrix of damping (viscous friction) coefficients 
33×∈RB , the vector of Coriolis and centrifugal forces 3R∈c , and the vector of gravitational forces 

3R∈g . 

Due to specific orientation of the revolute joint axes, some elements of equation (7) are quite 
simple. Only the diagonal elements jii (i = 1, 2, 3) of the inertia matrix J and the elements j23 and j32 are 
the non-zero elements. Moreover, the elements of matrix J are independent of the variable q1 and the 
following formulas are valid: ( )3211 ,qqfj = , ( )3322322 ,, qfjjj = , .33 constj =  Because of the parallel 
orientation of the second and the third revolute joints, there is a significant inertial interaction between 
the corresponding links but this interaction is mutually equivalent, i.e. 3223 jj = . 

As for gravitational forces, the first element of vector g is zero, i.e. 01 =g  due to vertical 
orientation of the first joint axis. The Coriolis and centrifugal term c is independent of the variable q1 
but the influence of the joint velocities is complete. 



The final structure of the MATLAB-SIMULINK model of the 3-DOF robot manipulator 
dynamics can be seen in Figure 3. Figure shows the characteristic vertical structure of three links. 
Each link is represented by the individual group of objects with the input driving torque (tau) on the 
left-hand side and the set of output signals (the angular position q, the angular velocity q’ and the 
angular acceleration q’’) on the right-hand side. The upper group (index 1) stands for the first link and 
the lower group (index 3) is for the third link. The interaction between any pair of links is given by the 
output signal coupling. 
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Figure 3: MATLAB-SIMULINK structure of the 3-DOF dynamic model 

4 Experimental Results 
Dynamic model of the 3-DOF robot manipulator has been utilized in the synthesis process of 

various robust motion control algorithms. In Figure 4, there is an example of a perfect command 
tracking ability using the sliding mode control [3] within the drop down phase of the manipulator 
positioning. The upper part of figure shows the command (desired value qd) and the controlled 
variable (angle position q) plots in time domain. The left-hand side graph corresponds to the first link 
motion, the middle graph to the second link motion, and the right-hand side graph to the third one. The 
lower part of Figure 4 shows the corresponding driving torque versus time diagrams. 

At the beginning of the control process, the starting position of all manipulator links is vertical 
( 0=q and 0=dd ), i.e. there is no gravitation influence in any joint. This implies the zero value of the 
driving torques ( 0=τ ). In contrast, the final position of the neighboring links should be perpendicular 
to each other ( 2π=dq ), i.e. there is a maximal gravitation influence in the second joint and no 
influence in the third one. This corresponds with a non-zero final value of the driving torque in the 
second DOF and a zero driving torque in the third DOF (cf. Figure 4). 

It is evident, that the interval of the maximal positive value of a driving torque corresponds with 
the period of the link acceleration. Similarly, the maximal negative impulse of the torque value 
appears at the beginning of the breaking period. Nevertheless, the considered direction of the 
manipulator motion shows a strong additional influence of the gravitational forces (the same direction 
of the gravitation and the motion) on the second and the third link behavior. Thus, the compensation of 



gravitational forces implies the mostly negative values of the driving torques for the period of the 
positioning. 
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Figure 4: Command tracking in 3-DOF robot manipulator (drop down phase) 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

p
o

si
ti
o
n

 [
ra

d
]

qd1

q1

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

time [s]

p
o

si
ti
o
n

 [
ra

d
]

qd2

q2

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time [s]

p
o

si
ti
o
n

 [
ra

d
]

qd3

q3

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-80

-60

-40

-20

0

20

40

60

80

100

time [s]

d
ri

vi
n

g
 t

o
rq

u
e
 [
N

m
]

τ1

0 0.5 1 1.5 2 2.5 3 3.5 4
-200

0

200

400

600

800

1000

1200

time [s]

d
ri

vi
n

g
 t

o
rq

u
e
 [
N

m
]

τ2

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

100

150

200

250

300

350

400

450

time [s]

d
ri

vi
n

g
 t

o
rq

u
e
 [
N

m
]

τ3

 
Figure 5: Command tracking in 3-DOF robot manipulator (pick up phase) 



Figure 5 illustrates the behavior of the 3-DOF manipulator dynamics during the pick up phase 
of the positioning. The initial position of the second and the third manipulator link is horizontal 
( 211 π−== dqq  and 022 == dqq ). In this case, to accelerate the manipulator from the starting 
position and to overcome the gravitational forces influence, the driving torque in the second joint 
should reach the maximal value (cf. the starting positive impulse of the corresponding torque in 
Figure 5). For the reason that the constant (zero) desired value of the third link has been chosen, i.e. 
the mutual position of the second and the third link remains the same during the whole transient 
process, the driving torque in the third joint should have the behavior similar to the torque in the 
preceding joint (cf. Figure 5). This is the direct evidence of the intensive inertial influence between the 
second and the third link. Within the breaking phase, gravitational forces help the driving motors in 
the second and the third DOF to slow-down the motion. Thus, the amplitudes of the driving torques 
have the small negative values. The high starting value of the driving torque in the first joint (Figure 5) 
is the consequence of the maximal inertia torque due to the horizontal position of the second and the 
third link, which is the opposite case of the situation in Figure 4. At the end of the positioning, there is 
no influence of the gravitation forces in any joint. This implies the zero values of driving torques in 
steady state. 

The high-frequency oscillation (chattering) of the driving torque in the first DOF (cf. the 
starting phase of the motion in Figure 4 and the steady state in Figure 5) is the consequence of the 
applied control algorithm – the sliding mode control. The elimination of chattering is beyond the scope 
of the presented contribution. However, this oscillation has no influence on the tracking quality. 

5 Conclusions 
The contribution presents the main features of a 3-DOF manipulator dynamic model synthesis 

using the Euler-Lagrange formalism and the homogeneous transformation matrices. The MATLAB-
SIMULINK model structure is provided and the model is demonstrated by means of a robust 
command following control algorithm. Such a type of control with an unambiguous correlation 
between the desired value and the driving torque enables an exact interpretation of the experimental 
results with respect to the verification of the synthesized dynamic model. The torque versus time 
diagram shows an acceptable behavior of the presented model. 
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