

Matlab + Compressive Sensing + Scanning Electron Microscopy

Pavel Potocek, Thermo Fisher Scientific, Eindhoven, Nederlands 2017-09-07

The world leader in serving science

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

SCIENTIFIC

Life Science, Electron Microscopy

- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

THE GRIFFITH CLUB MICROSCOPE.

Electron Microscopy for Life Science

(USA launched 2010 to map wiring human brain) Connectome

Increased interest to understand the brain functionality

Brain investigation example

Neurons and their connections - synapses

SCIENTIFIC

Which tool for Imaging?

Very Short introduction to Scanning Electron Microscopy

Brain Reverse Engineering

• Reverse engineering is one of the most important techniques

Knife 1mm slice Blade 70um slice Knife-edge, SEM 300-500nm slice full mouse brain about 100 hours Diamond knife, SEM 25-50nm slice

Data acquisition workflow

Data acquisition workflow overview - movies

VolumeScope data acquisition

Neuron reconstruction (from National Geographic, Lichtman)

Acquisition timing example

		Volume size ~ 300-500um Details ~ 10nm	
Acquisition	Dwell time	100ns	1us
Single section image	Pixel resolution	32-64k	32-64k
	Data size	2 – 8 GB	2 – 8 GB
	Acquisition time	2-8 m	20-80 m
Full 3D volume	Data size	64 - 512 TB	64 - 512 TB
	Acquisition time	38 – 304 d	380 – 3040 d

- No cutting
- No tiling involved No stage movements
- No auto-functions No processing
- Single 16bits data instance
- No failure

MPI: Denk, Helmstaedter: 13kx50kx50k = 33TP 8 weeks acquisition; 2years to reconstruct

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

Why do we need auto-functions?

Different imaging conditions (beam energy, working distance, ...)

Without any adaptation

Reference

Compensation after auto-functions

Reference

Thermo Fisher SCIENTIFIC

Matlab to test different focusing algorithms

Thermo Fisher SCIENTIFIC

14 Public

Matlab inline in Python notebook with other languages

Code

-	
In [1]:	# XT MPC connection import pycsharpbridge as pycsharp C#
	<pre>ip = get_ipython() if connect_to_xt: ip = get_ipython() pycsharp.load_ipython_extension(ip, csharp=kernelExe, socket_addr=kerne lSocket)</pre>
Out[1]:	Test socket is_kernel_running :tcp://mpc-d0000:9002 Req:{"cmd": "connect"} .Connected to already running csharp kernel
In [2]:	<pre># load matlab magic extension import pymatbridge as pymat Matlab</pre>
	<pre>ip = get_ipython() pymat.load_ipython_extension(ip) # get the matlab magic module magic = ip.magics_manager.registry['MatlabMagics']</pre>
Out[2]:	Starting MATLAB on ZMQ socket tcp://Matlab-station:54400 Send 'exit' command to kill the server MATLAB started and connected!
In [3]:	<pre># Image acquisition (C#) and sharpness calculation (matlab)) wd = 3.5e-3 %csharp MakeWDsnapshot(wd, 0); -i wd %csharp ArtImage image = GetImage(0); -o image display(image.resize((256,221)))</pre>
	<pre># get sharpness from matlab %matlab; -i image magic.Matlab.run_code(matlabcode) %matlab; -o compSharpness print(NiceFormat(compSharpness))</pre>

Output

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

Compressible vs Sparse Signals

Compressive sensing – motivation from JPEG

• How sparse is the microscopy image?

Statistics for ~1000images Sparsity=relative # DCT coefficients for >99.75% energy

2012 Sparse imaging for fast electron microscopy (S.Anderson)

Dartmouth College

Signal reconstruction for Compressive sensing

- Signal reconstruction from sampling measurements
- Nyquist-Shannon theorem
 # samples depends on the signal's frequencies
- Candes-Tao-Donoho (2004-2006)
 # samples depends on the signal's sparsity

Compressive sensing principle

SCIENTIFIC

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

What we need for the Compressive Sensing for EM?

Promise of high speed and low dose imaging.

Scanning strategies

Visiting random positions

Minimum path scan

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms
- Matlab Integration: Integration to Acquire Big Data

Reconstruction algorithms

Reconstruction algorithm comparison at 50%

Reconstruction algorithm comparison at 20%

Dose-sparsity image quality analysis

- Life Science, Electron Microscopy
- Matlab Integration: Image Acquisition Stability
- Compressive Sensing Basics
- Image Acquisition with CS
- Matlab: Reconstruction Algorithms

Matlab Integration: Integration to Acquire Big Data

How Matlab helps to evaluate Compressive Sensing?

Large Dataset Acquisition - Comparison

Sparse Volume

Reconstruction

Full Grid Volume

- Matlab is a nice computational tool
- It is even nicer when integrated in full workflow
- It is very good to evaluate algorithms

(image sharpness, compressive sensing, ...)

