### Virtual Electric Vehicle in real-world environment

Jiří Minarik, Petr Liškář



#### Background

#### Scope'n'Goal

- Create a single tool for quick, efficient and accurate evaluation of a specific product value designed for EVs without being limited
- Built Matlab/Simulink Virtual EV model with High-fidelity features with low computational requirements
  - Twin-track Vehicle Model
  - Traction Drive Model
  - Thermal Management
  - Vehicle Controls





### Virtual EV



#### Vehicle models

#### Single-track model

- 3DOF Single-track model
- 14DOF Twin-track model
- Sedan, SUV, ...
- Configurable chassis and tire model
- Aerodynamic model



#### Drivetrain



- Multi-motor
- Multi-inverter
- Multi-gearbox
- Library with 5D motor
  - maps
- Library with 5D 800 V inverters

#### Environment

- Wind, temperature, air pressure
- Altituted, Latitude sensitive
- Wind gust and turbulence model

#### Controls and monitoring

|e. A⊐•⊡≓

Yes one religenceder

- + Autocruise
  - Route speed planning
  - GPS data integration
  - ABS, ESP, Slip control, Torque vectoring
  - Dynamic maneuvres testing ready



- Calibrated model
- Unique extended Thevenin model developed
- Automated procedure and measurement system

#### Cooling system

• Simscape model of Vehicle HVAC



#### Auxiliary systems

- Vehicle subsystems
- Power steering, lights, other loads

#### Graphical visualisation





### Virtual EV - GUI

| File Help +                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                        | Driving Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drivetrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cooling System                                                                                                                                                                                                                                          |
| Venicle         Simulation Settings         Simulation Time         10         Paint         Ox         Sedan         VAN         SUV         Pick-Up         Driver Type         Image: Human         Model Type         Single-Track         Twin-Track         Vehicle Controllers         Longitudinal Motion         Traction Control         ABS         Lateral Motion         Torque Vectoring         Lateral Driver         ESP | Passeger Weight [kg] 0<br>Trunk Weight [kg] 0<br>Verhead weight [kg] 0<br>Pront Left Passenger<br>Rear Left Passenger<br>Rear Right Passenger<br>Front Right Passenger | 1-D Motion         Select       None         2-D Motion         Double-Lane Change         Initial Speed [km/h]       0         Turning Maneuver         Steer Angle [deg]       0         Target Speed [km/h]       0         Initial Speed [km/h]       0         Initial Speed [km/h]       0         Skid-Pad Test       Pad Radius         Pad Radius       0         Target Speed [km/h]       0         Select       None         Select       None         Environment       Grade [%]         Wind       Road         Gust Start       0         Dry       Wet         Snow       Ice | Front Axle         Number of Motors       2         Left Wheel       Right Wheel         Motor Type       PMSM •         Inverter Type       Eaton i •         Inverter Switch Freq       •         Gear-Box       Ideal Fi •         Gear-Ratio       11.2         Rear Axle       Right Wheel         Number of Motors       2         Left Wheel       Motor Type         Motor Type       PMSM •         Gear-Ratio       11.2         Rear Axle       Right Wheel         Number of Motors       2         Left Wheel       Number of Motors         Inverter Type       Eaton i •         Inverter Type       Eaton i •         Inverter Type       Eaton i •         Inverter Switch Freq       •         Inverter Switch Freq       •         Inverter Switch Freq       •         Inverter Switch Freq       •         Gear-Box       Ideal Fi •         Gear-Box       Ideal Fi •         Gear-Ratio       11.2         Battery       Type       Option 1         Type       Option 1       Capacity [kWh] | Cabin         Initial Temp [*]         0         Target Temp [*]         0         Drivetrain         Initial Temp [*]         0         Target Temp [*]         0         Battery         Initial Temp [*]         0         Target Temp [*]         0 |
| Advanced Settings OK Plot Ca                                                                                                                                                                                                                                                                                                                                                                                                              | Cancel Help                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FATON                                                                                                                                                                                                                                                   |



### #Real driving, real drivers



#### Consequences



- Important EVs range discrepancies
- Different operational loads
- Missing key design specifications
- Overall customers dissatisfaction

#### Out of the lab simulations!



### #Real driving!Real drivers!

- Real world planned route
  - Speed profile generation for map given route
- Real drive logs
  - GPS logs processing and re-drive
- All atmospheric phenomenon's
  - Temperature, wind, altitude, air pressure
- Dry, wet, snow, icy roads
- 3D, 2D, 1D environment with countless duty cycles and driving scenarios







....SO....

...we have the model, right? ...we have the task, right? ...we have all set, right?

# Are we ready to go?



Simulation in "Real-World"....

...may have some pitfalls...

#### Importing the driving data? Generating data?

Let's Google maps everything! -> Can we use raw data?

Data?

What data?





### Data acquisition and preparation

Powerina Business Worldwide

[1] Coordinate Systems

Track approximation => GPX file => XYZ positions



### Data acquisition and preparation



#### Simulation in Real-World

"Real-world" simulations may have some pitfalls...

Importing the driving data? Generating data?

Data?

What data?

#### Let's Google maps everything!

-> Can we use raw data?

#### -> How do I know how fast should I go?



#### Data acquisition and preparation



# How to generate velocity map?

DieselStation.com



#### Data acquisition and preparation

- Track approximation => GPX file => XYZ positions
  - XY positions + road grade angle

### How to generate velocity map?

- Measure by GPS
- Generate data





Powering Business Worldwide

•  $v_{max} = 90 \ km/h$ 





- $v_{max} = 90 \ km/h$   $a_{y,max}$  and Curvature  $^{1}/_{R}$





•  $v_{max} = 90 \ km/h$ •  $a_{y,max}$  and Curvature 1/RRoad legislation •  $a_{x,max}$  and  $\Delta s$ 90 km/h 80 km/h **Vehicle limits** 50/km/h Lateral acceleration 70 km/h Longitudinal acceleration 90 km/h Vehicle approximation





- GPS generates:
  - > Positions => track formulation

  - $\succ$  Time stamps => velocity calculation





- GPS generates:
  - Positions => track formulation
  - > Time stamps => velocity calculation

#### • GPS accuracy is not guranteed!

- Number of satellites
- ➢ Noise
- ➤ Multipath















#### Simulation in Real-World

"Real-world" simulations may have some pitfalls...

Data acquisition and preparation
Reference follower
Run simulation



#### Reference follower





#### **Reference follower**











# Is that all?









#### **Double Lane Change**

#### No stability and slip control

ABS + ESP + TSC

MPC controller + 60 km/h + Wet surface

#### #Real driving!Real drivers!





#### **#SystemToComponent**

• Asses the entire systems as well as the components performance



#### **#BoundaryConditions**

Accurate component boundary condition setup 

![](_page_32_Figure_2.jpeg)

|                      |                   | Fast<br>driver | Gentle<br>driver | delta |
|----------------------|-------------------|----------------|------------------|-------|
| Lateral acceleration | m.s <sup>-2</sup> | 5.51           | 6.09             | 11%   |
| Longit. acceleration | m.s <sup>-2</sup> | 6.04           | 3.2              | 47%   |
| Longit. deceleration | m.s <sup>-2</sup> | -9.74          | -8.45            | 13%   |
| Peak power           | kW                | 188.8          | 64.2             | 66%   |
| Peak recuperation    | kW                | -77.8          | -50.5            | 35%   |
| Battery current      | А                 | 257            | 87               | 66%   |
| ESP engagement       | -                 | 6              | 2                | 67%   |
|                      |                   |                |                  |       |

#### Lessons learned

- High-fidelity single-tool model is feasible (using multilayer 1D models on component level)
- True 3D driving scenarios requires elaborated vehicle controllers
  - Autocruise, Augmented stability program (ABS, ESP, TC,...)
- Accurate battery cell (pack) model is essential for all electric energy consumers within the vehicle grid
- Some batteries behavior is opposed to the common sense
- Regenerative braking should contain an Anti-block function integrated within the Traction Inverter
- Continuous fault detection, maintenance and remediation (on-board or as a cloud function)

![](_page_33_Picture_8.jpeg)

Without learning the whole picture you may pass, but you cannot fit !

![](_page_33_Picture_10.jpeg)

#### Reference

- [1] Coordinate Systems <u>http://www.dirsig.org/docs/new/coordinates.html</u>
- [2] Comparative Control of a Nonlinear First Order Velocity System by a Neural Network NARMA-L2 Method

https://www.researchgate.net/publication/251843836\_Comparative\_Co ntrol\_of\_a\_Nonlinear\_First\_Order\_Velocity\_System\_by\_a\_Neural\_Net work\_NARMA-L2\_Method

 [3] Model predictive control technology demystified <u>https://new.abb.com/control-systems/features/model-predictive-control-mpc</u>

![](_page_34_Picture_5.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)