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Abstract 

The paper is oriented to statistical testing of ANN output in special cases. The neural network 
with several inputs and single output is able to classify objects into two classes depending on the 
ANN output value. Basic types of neural networks are included: linear perceptron, bipolar 
perceptron, sigmoidal perceptron, MLP and RBF. Various statistical properties of ANN output 
signal enforce various strategies of statistical testing. The non-parametric approach is 
represented by Fisher’s factorial, chi square, Wilcoxon-Mann-Whitney and Kolmogorov-
Smirnov test. The general methodology is based on ANN learning on the training pattern set and 
statistical testing on the verification set. All the calculations were performed in the Matlab 
environment.   

1 Introduction 

Artificial Neural Network is a modern tool for data processing and categorization. When the 
ANN was learned on training pattern set, it could be tested on another verification pattern set. The 
difference between ANN output and its given value can be subject of statistical testing. The hypothesis 
testing depends on the character of ANN output. When the ANN input is a stochastic vector, the ANN 
output is also stochastic variable with known or unknown distribution. The are five types of single 
output neural networks: linear perceptron, bipolar perceptron, sigmoid perceptron, MLP, RBF and 
their output can be subject of statistical testing. It is necessary to introduce the basic ANN types first.   

2 ANN Preliminaries 

Let  N∈n , input vector n
nxx Rx ∈= ),...,( 1  and output value RD ⊆∈*y . Then the vector 

*),( yxp =  is called pattern in this context. The traditional output domains are }1;0{1 =D , 

}1;1{2 +−=D , ]1;0[3 =D , ]1;1[4 +−=D  or RD =5 . Let N∈m . Then },...,{ 1 mppPS=  is called 

pattern set. In the special case of 2DD = , the pattern set can be split into subsets 

}1*|{ +=∈=+ yPSpPS  and }1*|{ −=∈=− yPSpPS , which are called sets of positive and 
negative patterns. The pattern set can be also split into training and verification pattern sets and their 

subparts. The training pattern set and its positive and negative parts are denoted as −+ TSTSTS ,, . 

The verification pattern set and its positive and negative parts are denoted as −+ VSVSVS ,, .  

The artificial neural network (ANN) with single output can be represented as a function 
RR →n:ANN  and its output is then expressed as )ANN(x=y . There are many various models of 

ANN with single output. The direct processing comes to two-layer systems as linear, bipolar and 
sigmoid perceptrons, which are represented by formulas 
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with weights as subjects of learning on the training pattern sets. Introducing the hidden layer of 
N∈H  artificial neurons, we obtain three-layer ANN of 1−− Hn  topology. According to the 



literature the most frequent ANN’s are multilayer perceptron (MLP), MLP with linear output (MLL) 
and radial basis function network (RBF). The adequate formulas with unknown weights are  
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3 Statistical testing 

 

Proposed methods of statistical testing can be applied only in a special case of verification set of 
bipolar patterns. Thus, the training pattern set cannot be used for the testing to prevent the 
incorrectness. It implies that the ANN weights can be estimated from the training pattern set using any 
learning method but they must be independent on the verification set of patterns. 

 

3.1 Bipolar testing 

Beginning with learned bipolar perceptron, we can form 2×2 contingency table with individual, 
marginal and total event frequencies. There are only four possible events and the contingency table 
consists of values 
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Supposing that ),min(),min( dacb ≤ , we can use Fisher factorial test and evaluate the testing 
criterion  
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with critical value 0.05. Non-passing the test means the success in ANN learning.  

 

In the case of significant marginal frequencies when 5
),min(),min( ≥

N

SRQP
, we can apply 

2χ  test with testing criterion 
( )

PQRS

bcad
N

2
2 −=χ  which belongs to 2χ  distribution with one degree 

of freedom. The high value of testing criterion is an indicator of ANN learning quality.    



The previous two tests can be also used for another ANN types after the output thresholding. 
Let R∈θ be threshold value, which was obtained via training pattern set.  The bipolar output variable 
can be easily obtained as )sign( ANN θ−= yy . It implies that linear perceptron can substitute bipolar 

or sigmoidal ones in this type of tests. In analogy, the MLP is equivalent to MLP with linear output in 
this case.  

3.2 Rank based testing 

Continuous output of ANN can be investigated via rank based testing. Let += VSm , 

−= VSn  be sizes of two ANN output samples ( )mξξ ,...,1  and ( )nηη ,...,1 .  Let ( ))()1( ,..., nm+ψψ  be 

ordered union sample and kr be rank of kξ in it.  
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Another approach is based on the distance between experimental cumulative distribution 
functions )(F),(F xx nm of ANN output samples. The Kolmogorov-Smirnov test evaluates critical 

probability 
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and cumulative distribution function )2exp()1(21)(F 22
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The sigmoid function is increasing one. It implies the testing comes to the same results for 
linear and sigmoid perceptron. The MLP is also equivalent to MLL output in the same meaning. 

4 Illustrative example 

A MLL neural network with 12 inputs 4 hidden neurons and one output were trained on 33 
positive and 14 negative patterns. The statistical properties was studied in the case of 16 positive and 
16 negative patterns with threshold value 0=θ .  

Fisher’s factorial test with 15,1,0,16 ==== dcba  offered the actual probability 

05.010828.2 9 <×= −p , which means significant dependence between ANN output and pattern 
output. 

The second test of contingency table came to 235.282 =χ  and thus 05.010074.1 7 <×= −p , which 
also means significant dependence. 

The Wilcoxon-Mann-Whitney test evaluated the criterion 16=U , which implies 

05.010431.2 5 <×= −p  and the symmetry of union sample is refused. 

The value 9375.0=D  was obtained via Kolmogorov-Smirnov test. Thus 05.010327.3 9 <×= −p , 
which means the samples are not from the same distribution. 



5 Conclusions 

Various statistical approaches were used for the testing of ANN output on the verification set. 
The non-parametric techniques based on contingency tables, ranks, symmetry or cumulative 
distribution function distance, play the role in correct statistical testing of ANN output. Given example 
exhibits the high sensitivity of Fisher’s factorial test and Kolmogorov-Smirnov test. But the Wilcoxon-
Mann-Whitney test was not too sensitive in the case of strongly separated samples. Proposed 
methodology enables an alternative view to the quality of ANN learning.  
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