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Abstract: In Support Vector Machines (SVM’s), a non-linear model is estimated based on solving
a Quadratic Programming (QP) problem. Based on work [1] we investigate the quantifying of
statistical structural model parameters of inflation in Slovak economics. Dynamic and SVM's
modelling approaches are used for automated specification of a functional form of the model in data
mining systems. Based on dynamic modelling, we provide the fit of the inflation models over the
period 1993-2003 in the Slovak Republic, and use them as a tool to compare their forecasting abilities
with those obtained using SVM's method. Some methodological contributions are made to dynamic
and SVM’s modelling approaches in economics and to their use in data mining systems. The study
discusses, analytically and numerically demonstrates the quality and interpretability of the obtained
results.

Three partly modified programs developed by S. Gunn [4] cover the SVM regression technique
by applying in the Matlab5 version. There is no need for a manual here because all programs are user-
friendly even for beginners in using MATLAB.

Keywords: Support vector machines, data mining, learning machines, time series analysis, dynamic
modelling.

1 Introduction

Model specification and estimation are two major components in econometric modelling. They
are often treated as two separate but closely related steps in econometric model building. In modelling
economic quantities, probably the most important step consists of identifying the relevant influential
factors.

This contribution considers the econometric modelling of inflation in the Slovak Republic. The
main tools, techniques and concepts involved in econometric modelling of inflation are based on the
Phillips concept [8]. According to the Phillips inflation theory the variable inflation is generated on
a set of underlying assumptions. In any case, the analysed inflation rates are explained by the
behaviour of another variable or a set of variables, in our case by the wages and the unemployment
(independent variables).

In this paper the resulting SVM’s are applied using an g-insensitive loss function developed by
V. Vapnik. We motivate the approach by seeking a function which approximates mapping from an
input domain to the real numbers based on a small subset of training points. The paper is organised as
follows. The next section will provide a quick overview of the concept of SVM's theory. Section 3
analyses the data, discuses the Engle-Granger estimator and SVM estimator, and presents the fitted
inflation rate values by the classical regression methods and SVM’s models in Slovak economics.
A section of conclusions will close the paper.

2 Support Vector for Functional Approximation

This section presents quickly a relatively new type of learning machine — the SVM applied in
the regression (functional approximation) problems. For details we refer to [11], [12]. The general
regression learning task is set as follows. The learning machine is given n training data, from which it

attempts to learn the input-output relationship y = f(x), where {x,,y, e R"xR,i=12,...,n}

consists of n pairs {y,,x,} . The x, denotes the ith input and y, is the ith output. The SVM
considers the regression functions of two forms [11]. The first one is

FX)= Y e, — @ Wix,,x,) +b, m



where a[,a; are positive real constants (Lagrange multipliers), b is areal constant, y(./.) is the

kernel function. Admissible kernels have the following forms: l//(xi,x‘/) =Xl.TX ; (lincar SVM)
2
w(x,,X,)= (Xiij +1)? (polynomial SVM of degree d), w(x;,X,)= exp(— QHXi —Xjuz) (radial

basis SVM), where @ is a positive real constant and other (spline, b-spline, exponential RBF, etc.).
The second regression function is of the form

f(x,w) =iwl.g0i(x)+b, )

where ¢(.) is anon-linear function (kernel) which maps the input space into a high dimensional
feature space. In contrast to Eq. (1), the approximation function f(x,w) is explicitly written as

a function of the weights w that are subject of learning.

The Support Vector regression approach is based on defining a loss function that ignores errors
that are within a certain distance of the true value. This type of function is referred to as an e-
insensitive loss function.

y A y.‘
fIX,“?I

Fig. 1 The insensitive band for one dimensional linear (left), non-linear (right) function

Fig. 1 shows an example of one dimensional function with an e-insensitive band. The variables
f,f* measure the cost of the errors on the training points. These are zero for all points inside the

band, and only the points outside the e-tube are penalised by the so called Vapnik's e-insensitive loss
function.

In regression, typically some error of approximation is used. They are different error (loss)
functions in use and that each one results from a different final model. Fig. 2 shows the typical shapes
of three loss functions [2]. Left: quadratic 2- norm. Middle: absolute error 1-norm. Right: Vapnik's -
insensitive loss function.
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Fig. 2 Error (loss) functions

Formally, this results from solving the following Quadratic Programming problem

min_ R(w,¢,¢")= —w w+CZ(§ +&D). 3)
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To solve (3), (4) one constructs the Lagrangian
Lp(W,b,égiafi*’ai’a;aﬁi’ﬁi*)
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by introducing Lagarnge multipliers «, ,a, >0, & ,& >0,i=1,2, ..., n. The solution is given by

the saddle point of the Lagrangian [3]
Jmax, min, L,(w,b,&8,.¢ a,a,,p,5)
subject to constrains
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which leads to the solution of the QP problem:
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After computing Lagrange multipliers «; and a: , one obtains the form of (1), i.e.

F(0 = (@~ wx,x,)+b.

Finally, b is computed by exploiting the Karush-Kuhn-Trucker (KKT) conditions [3], i.e.

b:yk_Z(ai _a:)W(Xi’Xk)_g for a, €(0,0),
i1

b=y, - D (&, —a)w(x,,x,)+¢& for a; €(0,C).

i=1

3 Causal Models, Experimenting with Non-linear SV Regression
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We demonstrate here the use of SV regression framework for dynamic modelling of economic
time series where the time series or variable, say inflation, to be modelled can be explained by the
behaviour of another variable or a set of variables. First, we present an econometric approach for
modelling and investigating the relationship between the dependent variable of inflation measured by



CPI (Consumption Price Index) and the two independent variables are the unemployment rate (U), and
aggregate wages (W) in the Slovak Republic. Then, the SV regression is applied. Finally, the results
are compared between a dynamic model based on econometric modelling and an SVR model.

To study the modelling problem of inflation quantitatively the quarterly data from 1993Q1 to
2003Q4 was collected concerning the consumption price index CPI, aggregate wages W and
unemployment U. These variables are measured in logarithm, among others for the reason that the
original data exhibit considerable inequalities of the variance over time, and the log transformation
stabilises this behaviour. Fig. 3a illustrates the time plot of the CPI time series. This time series shows
a slight decreasing trend without apparent periodic structure.
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Fig. 3a Natural logarithm of quarterly inflation Fig. 3b Natural logarithm of actual and fitted
from January 1993 to December 2003 inflation values (model (11))

Experimenting with the linear transfer function models [1], the resulting reasonable model
formulation was found

CPI, = B, + 3, CPI,_, = 0.292+0.856 CPI_,. (11)
(0.158) (0.072) R’ =0.776

where the standard deviations of the model parameters are presented in parentheses. A graph of the
historical and the fitted values for inflation is presented in Fig. 3b. The model follows the pattern of
the actual very closely.

The model specification of (11) is the lagged dependent variable model in which the dependent
variables, lagged one period, appear as independent explanatory variables. If CPI; exhibits
a curvilinear trend, one important approach to generating an appropriate model is to regress the CPI,
against time. In Tab. 1 the SVR results of inflation were also calculated using an alternative time
series model expressed by the following SVR form

CPI, =Y wp,(x,)+b (12)
i=1
which is atime series model where X, =(1,2,...,43) is the vector of time sequence (regressor

variable).We report the results in Fig. 4. Since this pattern of change is a common practice, we desire
that our machine identify permanent changes and adjust the parameters to track the new process.

One crucial design choice is to decide on a kernel. Creating good kernels often requires lateral
thinking: many measures of similarity between inputs have been developed in different contexts, and
understanding which of them can provide good kernels depends on insight into the application
domain. The Fig. 4 shows SVM learning by using various kernels. In Fig. 4a we have a piecewise-
linear approximating function, while in Fig. 4b and Fig. 4c we have amore complicated
approximating function. Both functions agree with the training points, but they differ on the three y

values, they assign to other x inputs. The functions in Fig. 4d and Fig. 4e apparently ignore some of
the example points but are good for extrapolation. The true f(x) is unknown, and without further

knowledge, we have no way to prefer one of them, and so to resolve the design problem of choosing
an appropriate kernel in our application. For example, the objective in pattern classification from
sample data is to classify and predict successfully new data, while the objective in control
applications is to approximate non-linear functions, or to make unknown systems follow the desired
response.

Tab. 1 presents the results for finding the proper model by using the quantity R* (the coefficient
of determination) on our application of the best approximation of the inflation rate. As shown in Tab.
1 the “best” is 0.9999 for the time series models with the RBF kernel and quadratic loss functions. In
the cases of causal models the best R” is 0.9711 with the exponential RBF kernel and & -insensitive



loss function (standard deviation o = 0.52). The choice of o was made in response to the data. In
our case, the CPI, CPI, time series have o = 0.52. The radial basis function defines a spherical

receptive field in R and the variance o localises it.

The results shown in Tab.1 were obtained using & -insensitive loss function (¢ = 0.2), with
different kernels and degrees of capacity C = 10°. We used partly modified software developed by
Steve. R. Gunn [4] to train the SV regression models. The use of SV regression is a powerful tool to
the solution many economic problems. It can provide extremely accurate approximation of time series,
the solution to the problem is global and unique. However, these approaches have several limitations.
In general, as can by seen from equations (7), (8), the size of the matrix involved in the quadratic
programming problem is directly proportional to the number of training data. For this reason they are
many computing problems in which general quadratic programs become intractable in their memory
and time requirements. To solve these problems they have been introduced many modified versions of
SVM’s. For example the generalized version of the decomposition strategy is proposed by Osuna et al.
[7], the so-called SVM"" proposed by Joachims, Thorsten [5] is an implementation of an SVM
learner which addresses the problem of a large task, and finally, in [10] a modified version of SVM's
so-called least squares SVM’s (LS-SVM’s) is introduced for classification and non-linear function
estimation.

Tab. 1 The SV regression results of different choice of the kernels on the training set (1993Q1 to
2003Q4). In last column the approximation performance is analysed. See text for details.

Fig.4 MODEL KERNEL o DEGREE-d | LOSS FUNCTION R*
a causal exp. RBF 1 &€ - insensitive 0.9711
b causal RBF 1 &€ - insensitive 0.8525
c causal RBF 0.52 £ - insensitive 0.9011
d causal Polynomial 2 & - insensitive 0.7806
e causal Polynomial 3 & - insensitive 0.7860
f time series RBF 0.52 quadratic 0.9999

4 Conclusion

In this paper, we have examined the SVM's approach to study linear and non-linear models on
the time series of inflation in the Slovak Republic. For the sake of calculating the measure of the
goodness of fit of the regression model to the data we evaluated eight models. Two models are based
on causal multiple regression and six models on the Support Vector Machines methodology. Using the
disposable data a very appropriate econometric model is the regression (11).

The benchmarking was performed between traditional statistical techniques and SVM’s method
in regression tasks. The SVM's approach was illustrated on the conventional regression function. As it
visually is clear from Fig. 4, this problem was readily solved by a SV regression with excellent fit of
the SV regression models to the data.

In this paper, we have made some methodological contribution for SVM's implementations to
the causal statistical modelling and extended the SVM's methodology for time series problems. We
have shown that too many model parameters results in overfitting, i.e. a curve fitted with too many
parameters follows all the small fluctuations, but is poor for generalisation. Our experience shows that
SV regression models deserve to be integrated in the range of methodologies used by data mining
techniques, particularly for control applications or short-term forecasting where they can
advantageously replace traditional techniques. Finally, with the fine tuning of so many SVM’'s
parameters so crucial to the final outcome, the successful use of SVMs for economic modelling
requires a great deal of experience.
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Fig. 4 Training results for different kernels, loss functions and o of the SV regression (see Tab 1).
The original functions (plus points), the estimated functions (full line), the ¢ -tube (dotted lines) are
shown. Fig. 4a, 4c, 4d, 4e, 4f correspond to a good choice of the parameters, Fig. 4b corresponds to
a bad choice.
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