
MEET: MODULAR EEG PROCESSING TOOLBOX

J. Šťastný

1FPGA Laboratory, Department of Circuit Theory, Faculty of Electrotechnical Engineering,
Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic

Abstract

The contribution describes an EEG Matlab signal processing toolbox implement-

ing all the operations needed to carry out single-trial off-line EEG classification

experiments. Besides application in the author’s research the toolbox has been

already used by students of our laboratory as a starting point for their theses.

The toolbox is designed in a modular way allowing students to simply replace

parts of the system by their own implementations.

1 Introduction

All existing Brain Computer Interface (BCI) prototypes suffer from too slow communication
channel between a human brain and a computer working with Information Transfer Rate (ITR)
lower than 100 bits per minute. One way to improve the ITR is the recognition of more distinct
brain states – transferring more bits per state – high-resolution EEG recognition. Our research
deals with high-resolution movement recognition from the EEG signal; for more information
see [5]. To execute all experiments a dedicated software for EEG processing had had to be
developed. As our experiments grew and we needed to enlarge our team, we felt that it is
necessary to create a set of basic general-purpose tools available for new team members not to
start from scratch. As most of new colleagues are students, the envisioned library of functions
had to be as simple as possible to allow steep learning curve. Finaly we decided to write a
dedicated toolbox for Matlab cross-platform environment – Modular EEg processing Toolbox
(MEET).

The development of the whole system started as far as in 1999 in the frame of author’s
Master’s thesis. At these days, there was no satisfactory EEG processing software for Matlab
available. In between, many similar EEG processing systems appeared; among others eg the
EEGLab toolbox [2] or Bioelectromagnetism Matlab toolbox available at SourceForge. However,
none of them is specifically targeted to the needs of our research (eg HMM integration is not
present in any of them). Compared to other toolboxes, our system offers extreme simplicity
which is important for student’s own research work. To keep things simple, the toolbox also
does not have any graphical interface to reduce system complexity.

The MEET toolbox supports any existing EEG data format and any experimental proto-
col/procedure and allows future integration with the being designed real-time EEG processing
system. Further, the toolbox architecture allows students to simply extend it.

2 Toolbox Architecture

A configurable architecture with loosely coupled independent software modules was chosen. The
whole system has a unified modular architecture reflecting the BCI EEG processing pipeline,
see Fig. 1. The modules are autonomous, each module is a set of Matlab scripts exchanging
data with other modules via files stored on the hard drive in a predefined directory structure.
The names of files and directories are formed in a way to unambigously specify the contents of
any file in the system.

The modular architecture of the toolbox allows to simply replace parts of the systems by
other algorithms (CSP, ICA for surface filtering and others) without a need to change the other
parts of the EEG processing pipeline and simplifies reuse of the code.



Segmentation Feature extractionLaplacianEEG import.d file

H
T

K
 C

on
ne

ct
or

 (
ex

po
rt

)path_d path_raw_eeg path_laplace_eeg path_segmented_eeg

path_parameters

HTK toolkiitpath_resultspath_reports

Results processing path_parameters

path_config_eeg

Figure 1: BCI EEG processing pipeline flowchart.

All functions are distributed in the form of a standard Matlab code enabling full visi-
bility into them. Each function also contain a help so as Matlab’s standard help command
may be used to query function usage. The whole system has one global configuration file
library\configuration.m. The file is sourced by all the system scripts containing EEG
database setup, setup for all the operations, and defining paths to all directories storing in-
termediate data.

2.1 Initial Setup

The following steps are to be done prior to any work with the toolbox:

1. File setup environment.m is to be configured. This script file adds main library di-
rectory to the Matlab path so as Matlab may easily find all the needed scripts. Script
setup environment is to be run prior to any usage of the toolbox.

2. Then the main EEG data directory is to be defined in the configuration.m file. The
variable path main is to be set to the root of the EEG database directory structure.

3. Set of experimental subjects, electrodes, and blocks are to be defined by setting up the
appropriate variables in the configuration.m file.

2.2 EEG Import

One of the requirements on the system was that it shall support any EEG device data format. To
fulfill this requirement, data available in the proprietary EEG machine data format are always
converted into the Matlab format prior to any other processing. This way only the converter
between the native EEG device format and Matlab format is always to be written with any new
EEG database.

Currently we support reading of EEG databases in the .d BrainScope EEG format and
Alien Technik EEG manufacturer data format. Along with raw EEG, configuration records are
generated for each of the subjects using metadata present in the EEG datafiles. The config-
uration files contain among others sampling frequency, resolution (LSB/µV ), and number of
channels along with names of EEG channels and tags. Auxiliary functions get fs and get tags

are provided to isolate the user from the real format of the configuration files.



2.3 Surface Filtering

There are a few layers of head tissue in between the brain dipole sources and scalp electrodes
– cerebrospinal fluid, head tissues, skull bone, and scalp – resulting in low-frequency band
pass spatial filtering of the EEG activity. Due to the conductivity of human head structure
the scalp potentials are blurred and any highly localized EEG activity becomes less appar-
ent. This is in contradiction with the need of brain-computer interface experiments requiring
EEG activity with as low spatial blurring as possible. The surface filter compensates this blur-
ring to some extent. The discrete Laplacian filter is implemented in our toolbox (function
surface filtering\filter all data); the Small Surface Laplacian, Large Surface Laplacian,
8-Neighbour Laplacian, Common Average Reference [8], and None filtering are supported in-
cluding sampling instants realignment [13]. 8-Neighbour Laplacian filter is computed using real
coordinates of electrodes on a scalp [10] measured by 3D scanner.

Surface filtering implementation benefits again from the toolbox modular implementation.
New types of surface filters were already implemented by our students with ease, including
ICA and PCA preprocessing and Common Spatial Pattern extension to the standard Laplacian
filtering.

The Laplacian filtering has a dedicated configuration file library\ surface filtering config.m

containing setups of all the filters and also additional symbolic constants allowing to refer to the
appropriate filters in a human-readable way.

2.4 Segmentation

The next step in the BCI EEG processing pipeline is segmentation – extraction of the EEG seg-
ments containing single trials. Filtered EEG data is segmented based on the tags stored with the
original EEG data; the segmentation is performed by the script segmentation\segmentation.m.
Relevant tag types are defined in the configuration.m file. It is usual to use short EEG epochs
centered at the time of the movement when movement-related EEG is performed. The segmen-
tation module available in the MEET toolbox support division of the EEG into 10 sec long
epochs having the tag indicating desired activity in the fifth second of the epoch.

2.5 Feature Extraction

Our previous results [15] showed that the best results are reachable either with a pure FFT
linear spectrum or with AR model coefficients combined with ∆ parameters. The feature ex-
traction module 00 paramameterization\spectral analysis.m currently supports computa-
tion of power spectrum, linear spectrum, delta parameters, and AR model coefficients. The
parameters are computed using a sliding window technique; window size and step are given to
the function as input parameters.

2.6 HTK Connector And Classification

The Hidden Markov Model classification system is an integral part of the whole toolbox; however,
it is not implemented in Matlab – instead, Hidden Markov Toolkit [16], is used. HTK connector
module is a set of scripts implementing:

Feature conversion – signal features stored in the Matlab format are written down to the
disk in a format suitable for HTK.

Classification results processing – the HTK classification system stores classification results
in text files. Toolbox then reads all the results, computes mean recognition scores for all
subjects and EEG types along with standard deviations of the scores and produces detailed
report on the classification results. The report contains the classification scores sorted
according to various criteria (classification score per class, overall classification score, rank
of electrodes according to the classification score).



−5 −4 −3 −2 −1 0 1 2 3 4

10

20

30

40

Time [s]

F
re

qu
en

cy
 [H

z]

Subject 1, filter 16, electrode 15, Resting

 

 

−5 −4 −3 −2 −1 0 1 2 3 4

10

20

30

40

Time [s]

F
re

qu
en

cy
 [H

z]

Subject 1, filter 16, electrode 15, Little finger

 

 

−5 −4 −3 −2 −1 0 1 2 3 4

10

20

30

40

Time [s]

F
re

qu
en

cy
 [H

z]

Subject 1, filter 16, electrode 15, Thumb

 

 

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Figure 2: Averaged short-time spectra temporal development of movement-related and resting
EEG



HMMs analysis – a dedicated software module is designed to read back Hidden Markov Model
definitions as produced by HTK and do an analysis of the model contents. We are mainly
interested in average time spent in the model states and envelopes of spectra stored in the
emitting states of the models.

Confusion matrices analysis – a set of scripts aggregates all the confusion matrices produced
by all the runs of an experiment and computes mean confusion matrix. This matrix gives
an information on which type of EEG is interchanged with which by the classifier.

The classification experiment consists of the following steps performed for all subjects, electrodes,
and types of parameterization:

1. EEG is parameterized with a selected algorithm.

2. The randomization procedure is applied to combat the curse of dimensionality [7]. Each
classification experiment is repeated for 16 times with different (and random) division of
EEG realizations between the disjunctive training and testing sets. This helps us to get
reliable results independently on the concrete selected training and testing EEG realiza-
tions.

3. HMMs are trained (initialization, Baum-Welch reestimation) on the training set.

4. Classification is run on the testing set.

5. The average classification scores and standard deviations are computed for all of the EEG
types across all the performed experiments.

The toolbox also supports comparing results of more experiments and the implementation of
the classification system allows to run more parallel classifications experiments simultaneously
to fully utilize nowadays multicore processors.

2.7 Further Processing

Besides the functions mentioned above, the toolbox also provides other supporting functions to
facilitate EEG processing:

• Scalp topographic mapping support (using functions from toolbox [2]).

• Analysis and visualisation of short-time EEG spectra, and other additional functions for
EEG spectral and temporal analysis, see Figs. 2 and 3.

• Function to generate a unique name for any picture stored by the toolbox and other
infrastructure functions to eg obtain metadata of the EEG records.

• Statistical analysis of the linear spectra using Kruskal-Wallis mean value tests.

3 System Performance

An important criterion we had in mind during software development was the speed of EEG
processing. Since EEG processing is time-consuming, Matlab profiler was extensively used and
critical parts of the toolbox were rewritten to run as fast as possible. During performance review
of the system we made the following observations:

• A common practice used by students – array expansion

x = [x y] (1)

is extremely slow if the vector x is large. A simple remedy is to allocate all vectors prior
to their usage using the zeros or ones constructs.



• The matrix processing speed depends on if matrix is scanned row- or column-wise. The
difference is up to tens of percents in processing time. The root cause is the CPU memory
caching. Matlab stores data column wise, so row-wise scanning by the algorithm results
into more often trashing of the CPU cache and thus reduced performance. This observation
was confirmed by the paper [4] later on.

Figure 3: Averaged short-time spectra temporal development of movement-related EEG, scalp
montage.

The concept of exchanging data between modules using the disk files was proven as very
handy. It allows easily to fully separate data, pictures, and logs from scripts which facilitates
backing up of the toolbox and experimental results. The only drawback of the chosen architec-
ture is a need for fairly large disk space (up to ten gigabytes per database if all the parameters
and intermediate results are archived), but this is not an issue as disk space is quite cheap
nowadays.

4 Conclusions, Future Steps

The whole system was originally developed in the frame of author’s own research. The toolbox
was used by nearly all of our publications – [5, 6, 13, 14, 9, 3, 11] to cite only few selected ones.
Developed code was reused by or served as a starting point for nine master’s thesis and four
PhD theses. Compared to other EEG toolboxes, students do not have to face huge amount
of Matlab code and still obtain already debugged and running code which is simple to extend.
The whole toolbox has also a pedagogic dimension as students can have a look at the functions
and see how are the algorithms implemented. Both factors were proved as encouraging from
students’ points of view. Last, but not least, reusing the existing code helps to suppress the
“Not invented here” syndrome [1] in the students preparing them better for their future career.



The strictly modular architecture with well defined boundaries between modules was
proven as highly advantageous. Even beginners are able to quickly add new functions to the
system without a risk of introducing bugs into already running code, also the learning curve
of the system is quite steep. In addition to this, it is easily possible to introduce new modules
to the system and distribute them amongst students, even if they have an older release of the
whole system. The modular concept was reused during the development of our real-time EEG
processing software, see [12]; the RTP real time network transfer protocol was used for com-
munication between modules instead of the disk files. The flexibility of the MEET toolbox was
also proven by its succesfull application in more distant EEG processing fields during work on
research published in [9] (ssMRP HMM classification) and [11] (EEG-based biometric identifica-
tion). Finally, the modular architecture allows to maintain system integrity in the environment
where developers are fluctuating (students usually leave after finishing Master’s theses).

We currently plan to develop more tight interaction between the HTK subsystem and the
toolbox to support voting and thresholding of classification results. We also still have to rewrite
some parts of the code to use column based scanning instead of per-row scanning to speed up
matrix access. A support for lossless EEG compression to save disk space is to be added as
well. Last, but not least, the future development will be targeted to continuous EEG processing
support; we have already formed a team and have started design of real-time EEG processing
software which will implement our algorithms.

The whole toolbox is available on request at the author of the article.

5 Acknowledgement

This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS10/178/OHK3/2T/13. I also would like to thank to Jaromı́r Doležal for his work
done on converting the HTK scripting part to support the latest HTK release. The conversion
script for EEG import uses a proprietary Matlab function dread for import of .d files originally
developed by Jǐŕı Svoboda and then further extended by Tomáš Bořil.

References

[1] Alistair Cockburn. Agile Software Development: The Cooperative Game. Addison-Wesley
Professional, 2nd edition, 2001.

[2] A. Delorme. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
including independent component analysis. Journal of Neuroscience Methods, 134(1):9–21,
March 2004.

[3] J. Doležal, J. Šťastný, and P. Sovka. Recording and recognition of movement related EEG
signal. Applied Electronics, pages 95–98, Pilsen, Czech Republic, September 2009.

[4] Pascal Getreuer. Writing Fast Matlab Code. Technical report, 2009.

[5] Jakub Šťastný and Pavel Sovka. High-Resolution Movement EEG Classification.
Computational Intelligence and Neuroscience, 2007. Article ID 54925, 12 pages,
doi:10.1155/2007/54925.

[6] Jaromı́r Doležal, Jakub Šťastný, and Pavel Sovka. Recognition of direction of finger move-
ment from eeg signal using markov models. In Proceedings of the 3rd European Medical
& Biological Engineering Conference - EMBEC05. Prague, Czech Republic, volume 11 of
IFMBE Proceedings, pages 1492–1 – 1492–6, Nov. 20-25, 2005.



[7] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1137–
1145, 1995.

[8] Dennis J. McFarland, Lynn M. McCane, Stephen V. David, and Jonathan R. Wolpaw.
Spatial filter selection for EEG-based communication. Electroencephalography and clinical
Neurophysiology, (103):386–394, 1997.

[9] K. Nazarpour, J. Šťastný, and R. C. Miall. ssmrp state detection for brain computer
interfacing using hidden markov models. In Proceedings of IEEE/SP 15th Workshop on
the Statistical Signal Processing, pages pg. 29–32,, Cardiff, August 2009.

[10] Gert Pfurtscheller. Digital Biosignal Processing, chapter 17, pages 459–480. Elsevier, 2nd
edition, 1991.

[11] J. Šťastný. Brain-computer interface with an automatic user identification, utility model
no. 19972, application no. 2009-21380, accepted on the 24th of August, 2009, industrial
property office.

[12] Jakub Šťastný, Jaromı́r Doležal, Vladimı́r Černý, and Jan Kubový. Design of a modular
brain-computer interface. Applied Electronics, pages 312 – 322, Pilsen, Czech Republic,
September 2010.

[13] Jakub Šťastný and Pavel Sovka. The 3D approach to the surface Laplacian filtration with
integrated sampling error compensation. Elsevier Signal Processing magazine, (1):51 – 60,
2007.

[14] Jakub Šťastný, Pavel Sovka, and Andrej Stančák. EEG signal classification: Introduction
to the problem. Radioengineering, 12(3):51–55, 2003.

[15] Jakub Šťastný, Jǐŕı Zejbrdlich, and Pavel Sovka. Optimal parameterization selection for
the brain-computer interface. In Proceedings of the 4th WSEAS International Conference
of Applications of Electrical Engineering, WSEAS, pages 300–304, 2005.

[16] Stephen J. Young. HTK reference manual. Cambridge university engineering department,
1993.

Jakub Šťastný
stastnj1@seznam.cz, FPGA Laboratory, Department of Circuit Theory, Faculty of Electrotech-
nical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 166 27, Czech
Republic


