

20.11.2019 Technical Computing Prague

Robotic systems development in MATLAB

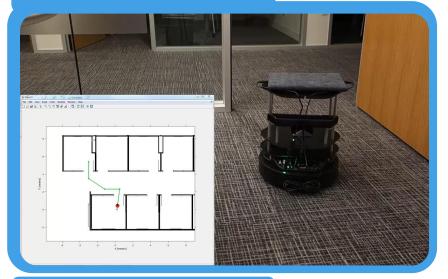
Michal Blaho

blaho@humusoft.sk


<u>www.humusoft.cz</u> info@humusoft.cz

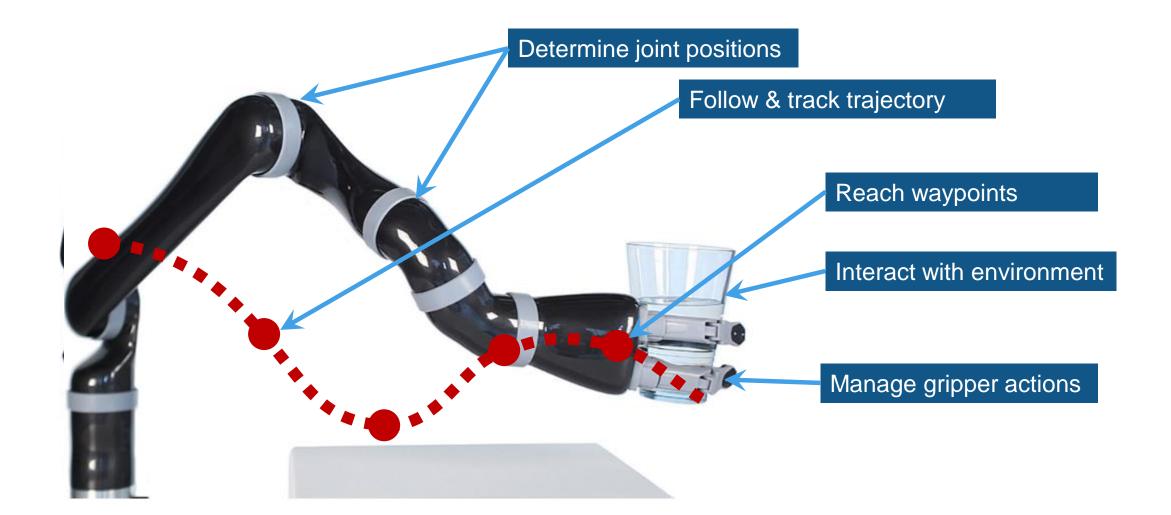
www.mathworks.com

Robot Applications

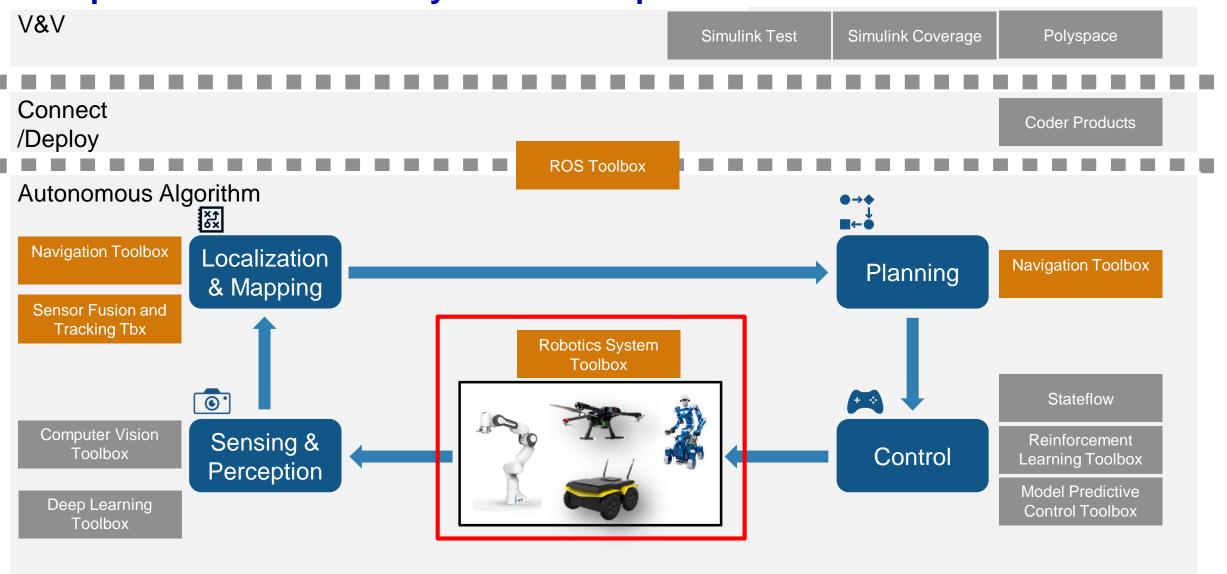

Manipulator Arms

UAVs

Mobile Robots



Humanoids



Challenges in Designing Robotics System

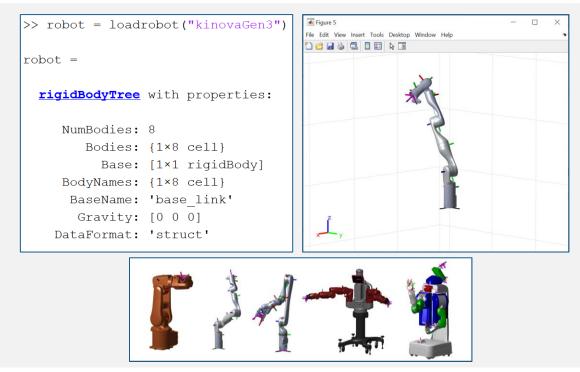
Components of Robotics System Development

Platform

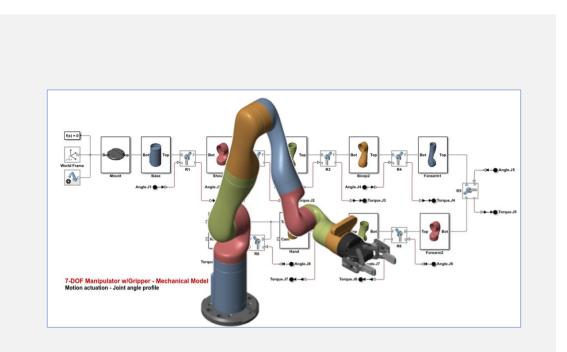
MATLAB

Simulink

Simscape

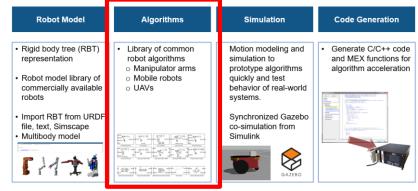

Robotics System Toolbox

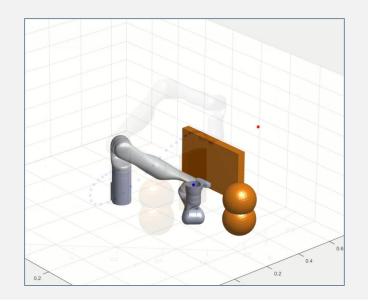
Robot Model	Algorithms	Simulation	Deployment
 Rigid body tree (RBT) representation Robot model library of commercially available robots 	 Library of common robot algorithms Manipulator arms Mobile robots UAVs 	 Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems. 	 Generate C/C++ code and MEX functions for algorithm acceleration
 Import RBT from URDF file, text, Simscape multibody model 	Gring Josef Construction Josef Construction <td> Synchronized Gazebo co-simulation from Simulink Image: Constraint of the second s</td> <td><pre>setup is in the setup is interval is</pre></td>	 Synchronized Gazebo co-simulation from Simulink Image: Constraint of the second s	<pre>setup is in the setup is interval is</pre>



Robot Model

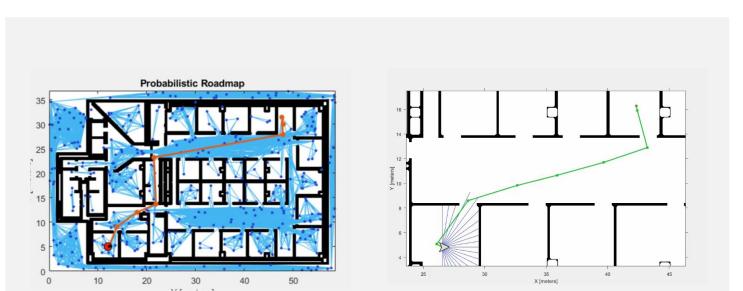
- Rigid body tree (RBT) representation
- Load a RBT robot model from a library of commonly used robots
- Import a RBT robot mode from URDF file


Robot Model	Algorithms	Simulation	Code Generation
 Rigid body tree (RBT) representation Robot model library of commercially available robots 	Library of common robot algorithms o Manipulator arms o Mobile robots o UAVs	 Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems. 	Generate C/C++ code and MEX functions for algorithm acceleration
Import RBT from URDF file, text, Simscape Multibody model		Synchronized Gazebo co-simulation from Simulink Simulink Simulink	



Algorithms - Manipulation

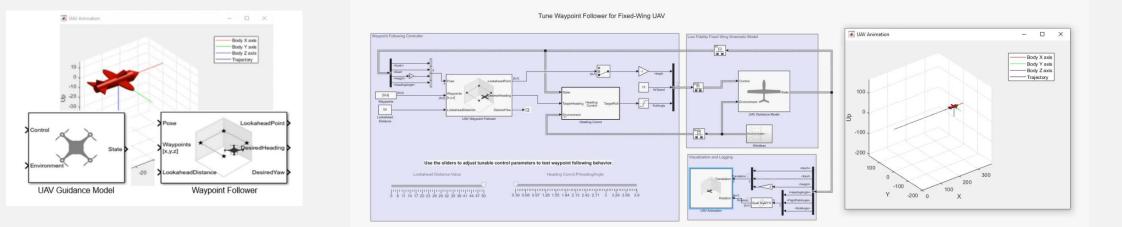
- Forward and inverse kinematics
- Generalized inverse kinematics & constraints
- Forward and inverse dynamics
- Trajectory generation
- Collision checking



Algorithms – Mobile Robots

- Mapping and map representation

 Binary occupancy grid
- Localization
 - \circ Odometry
 - \circ stateEstimatorPF
- Path planning
 - Probabilistic roadmap (PRM)
- Path following
 - \circ Pure pursuit


Robot Model	Algorithms	Simulation	Code Generation
 Rigid body tree (RBT) representation Robot model library of commercially available robots 	Library of common robot algorithms Manipulator arms Mobile robots UAVs	Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems.	Generate C/C++ code and MEX functions for algorithm acceleration
Import RBT from URDF file, text, Simscape Multibody model		Synchronized Gazebo co-simulation from Simulink	

HUMUSOFT

Algorithms – UAVs (Add-On Library)

- Guidance models
 - Reduced-order guidance model for fixed-wing and multi-rotor UAVs
- MAVLink communication
 - $\circ~$ Communicate with simulated/physical UAV
 - $\circ~$ Import and analyze UAV flight logs
- Waypoint following
 - $_{\odot}~$ Execute flight missions based on given waypoints

Robot Model	Algorithms	Simulation	Code Generation
 Rigid body tree (RBT) representation Robot model library of commercially available robots 	Library of common robot algorithms Manipulator arms Mobile robots UAVs	Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems.	Generate C/C++ code and MEX functions for algorithm acceleration
Import RBT from URDF file, text, Simscape Multibody model		Synchronized Gazebo co-simulation from Simulink CAZEBO	

Simulation

Motion modeling and

prototype algorithms

behavior of real-world

Synchronized Gazebo

 \bigtriangledown

co-simulation from

simulation to

systems.

Simulink

quickly and test

Code Generation

Generate C/C++ code

and MEX functions for algorithm acceleration

Robot Model

Rigid body tree (RBT)

Robot model library of commercially available

Import RBT from URDF

file, text, Simscape

Multibody model

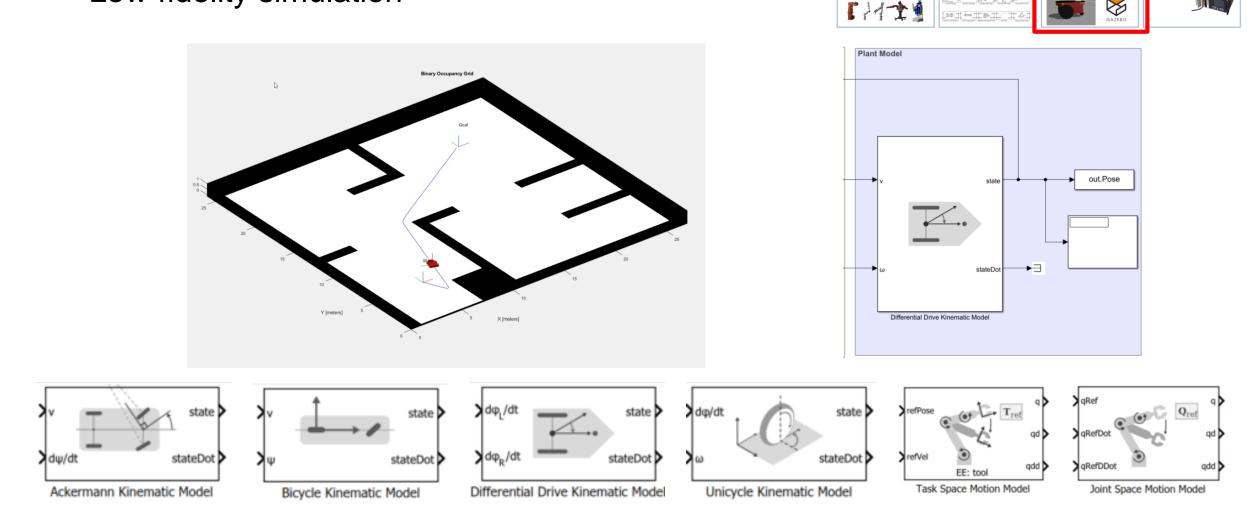
representation

robots

Algorithms

Library of common

Manipulator arms

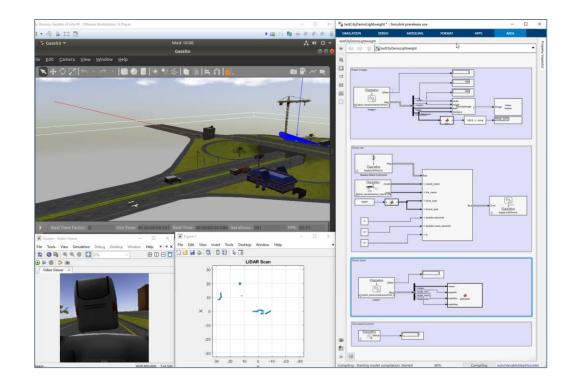

robot algorithms

Mobile robots

o UAVs

Simulation

Low-fidelity simulation

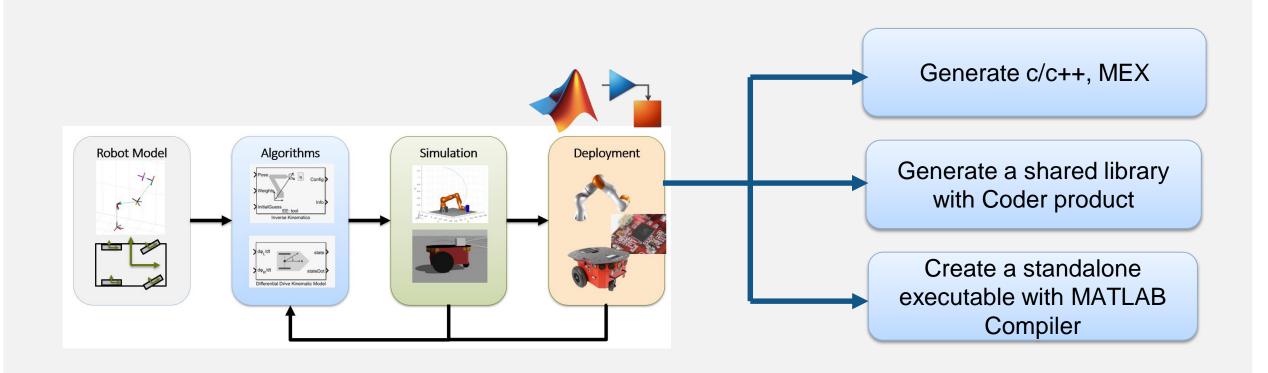


Simulation

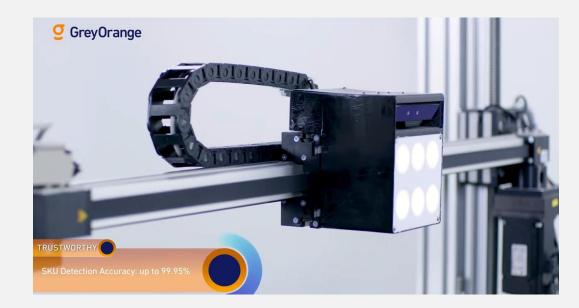
Gazebo Co-simulation

- Provides synchronized stepping between Simulink and Gazebo simulator
- Retrieve sensor data and ground truth pose for models from Gazebo simulator
- Actuate model links and joints in Gazebo simulator

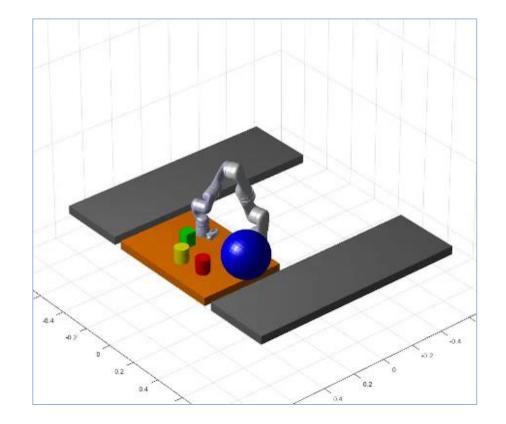
Robot Model	Algorithms	Simulation	Code Generation
Rigid body tree (RBT) representation Robot model library of commercially available robots	Library of common robot algorithms Manipulator arms Mobile robots UAVs	 Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems. 	Generate C/C++ code and MEX functions for algorithm acceleration
Import RBT from URDF file, text, Simscape Multibody model	nnnar Steiste Steiste	Synchronized Gazebo co-simulation from Simulink Simulink Correction Correction Correction	



Deployment


 Accelerate robotics algorithms with code generation

Robot Model	Algorithms	Simulation	Code Generation
 Rigid body tree (RBT) representation Robot model library of commercially available robots 	 Library of common robot algorithms Manipulator arms Mobile robots UAVs 	 Motion modeling and simulation to prototype algorithms quickly and test behavior of real-world systems. 	Generate C/C++ code and MEX functions for algorithm acceleration
Import RBT from URDF file, text, Simscape Multibody model	etytet Etytetytet Eleistets	Synchronized Gazebo co-simulation from Simulink Simulink Simulink Simulink Simulink Simulink	A Constant of the second secon



Example – Pick-and-Place Robot Arm

- Applications in warehouses, manufacturing, and medical industries
- RST: robot model, plan, control, and simulate robot
- MPC: trajectory optimization
- Stateflow: task-level planning and execution

Navigation is critical for autonomous systems

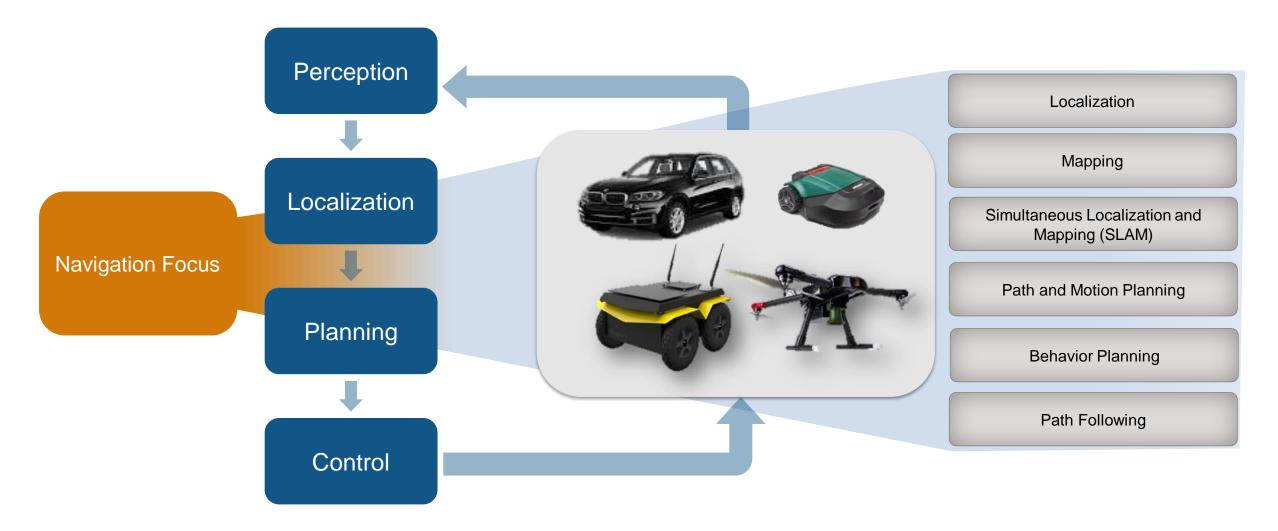
Qualcomm

Autonomous Robotics

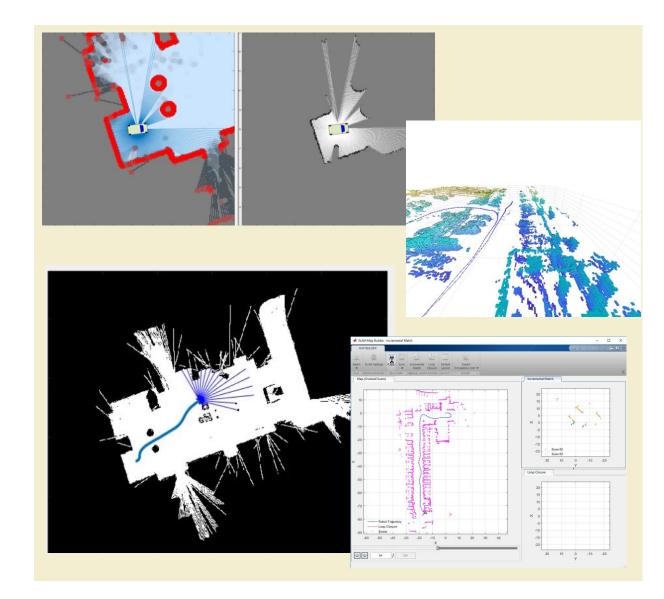
Overcoming obstacles in autonomous path planning and navigation.

We have developed **autonomous path planning and navigation systems** for drone and robots, enabling them to move safely through indoor and outdoor environments. For example, prior to flight, the user designates where the drone should go and the bounds of the area it will fly through. The drone's path planning algorithm uses a 3D model of the world (generated through voxel mapping) to build a random graph of unoccupied points in space and safely transitions between them. The graph represents all the collision-free paths the drone could select to reach its goal. The drone may see multiple paths but will pick the shortest path to its destination. Every hundred milliseconds, it updates its 3D voxel map and re-checks the planned path to ensure it is still safe. If at some point the drone encounters a potential hazard or obstacle in its path, it will re-vector to an alternate route based upon its internal decision-making

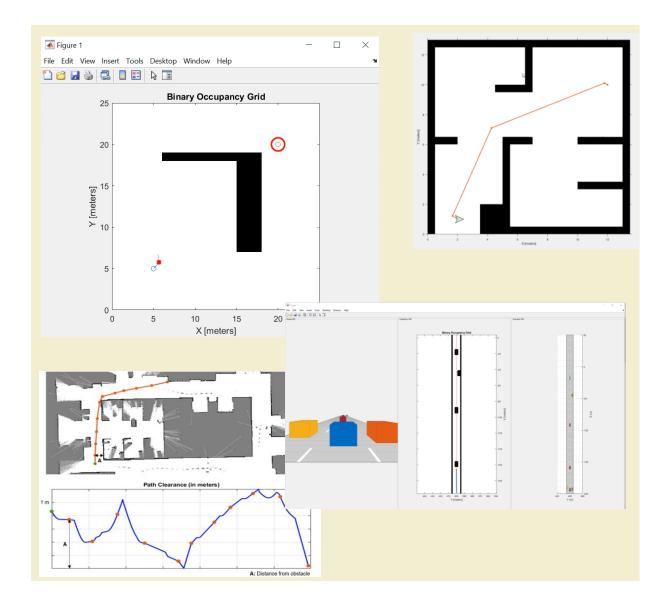
Navigation Tools


- Where am I going?
- What's the best way there?
- Where have I been?
- Where am I on map?
- What if you don't have a map?

Behavior Planning Path / Motion Planning Mapping Localization SLAM


Autonomous Navigation Workflow

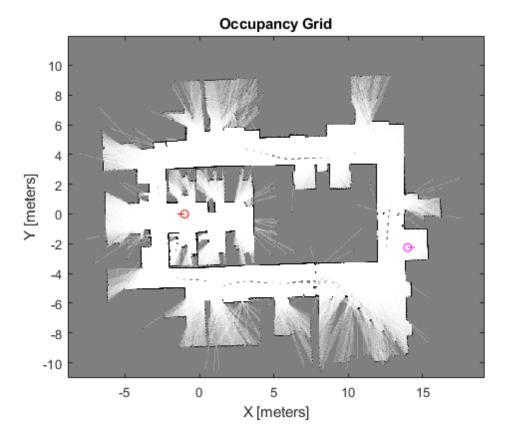
Navigation Toolbox

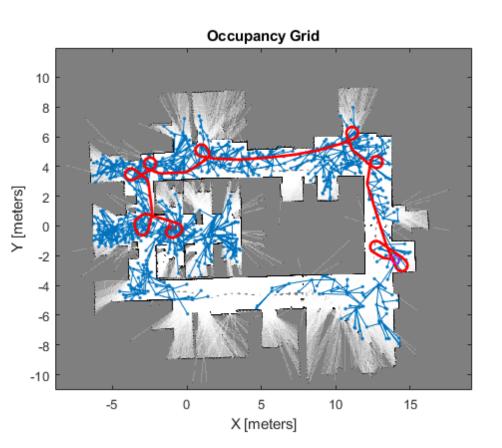

- Mapping and localization
 - 2D and 3D SLAM
 - Egocentric maps
 - SLAM map builder App

Navigation Toolbox

- Mapping and localization
 - 2D and 3D SLAM
 - Egocentric maps
 - SLAM map builder App
- Path planning and Following
 - Algorithms for path planning
 - Planner interface
 - Path metrics
 - Path following and controls

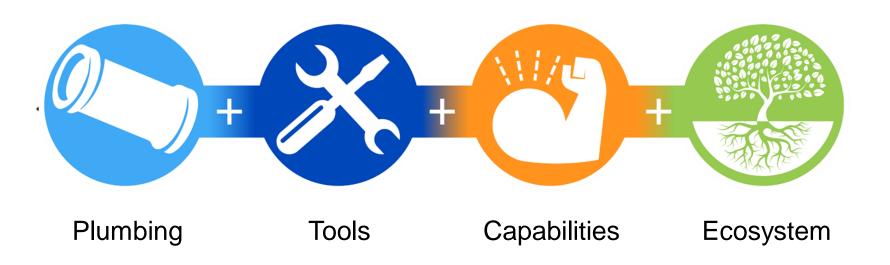
Navigation Toolbox

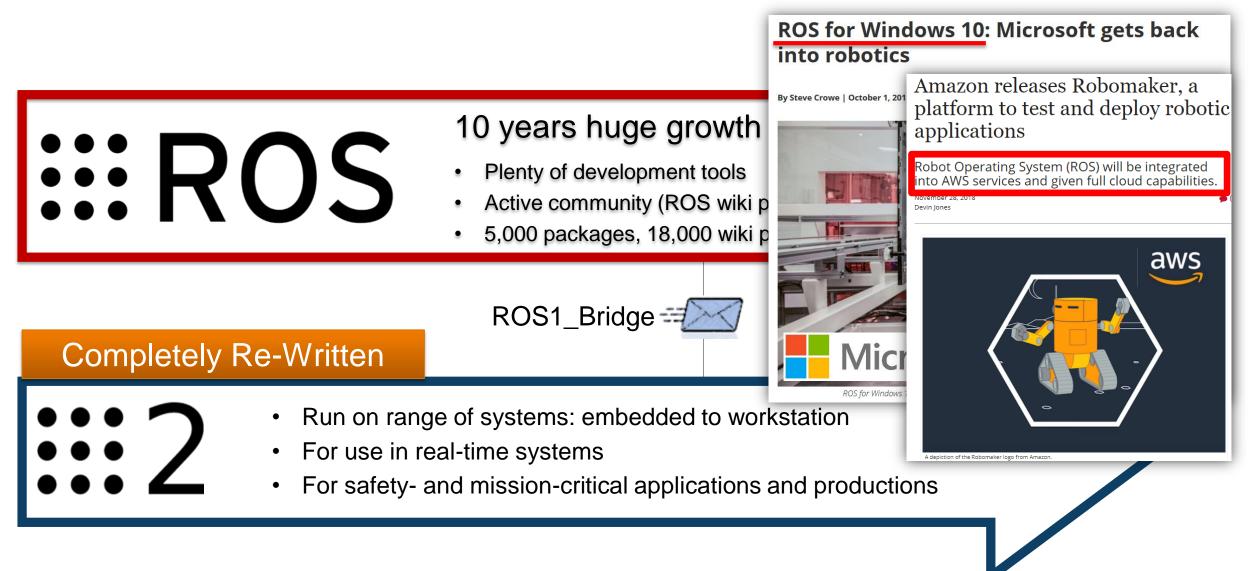

- Mapping and localization
 - 2D and 3D SLAM
 - Egocentric maps
 - SLAM map builder App
- Path planning and Following
 - Algorithms for path planning
 - Planner interface
 - Path metrics
 - Path following and controls
- Sensor modeling and simulation
 - IMU, GPS, INS sensors



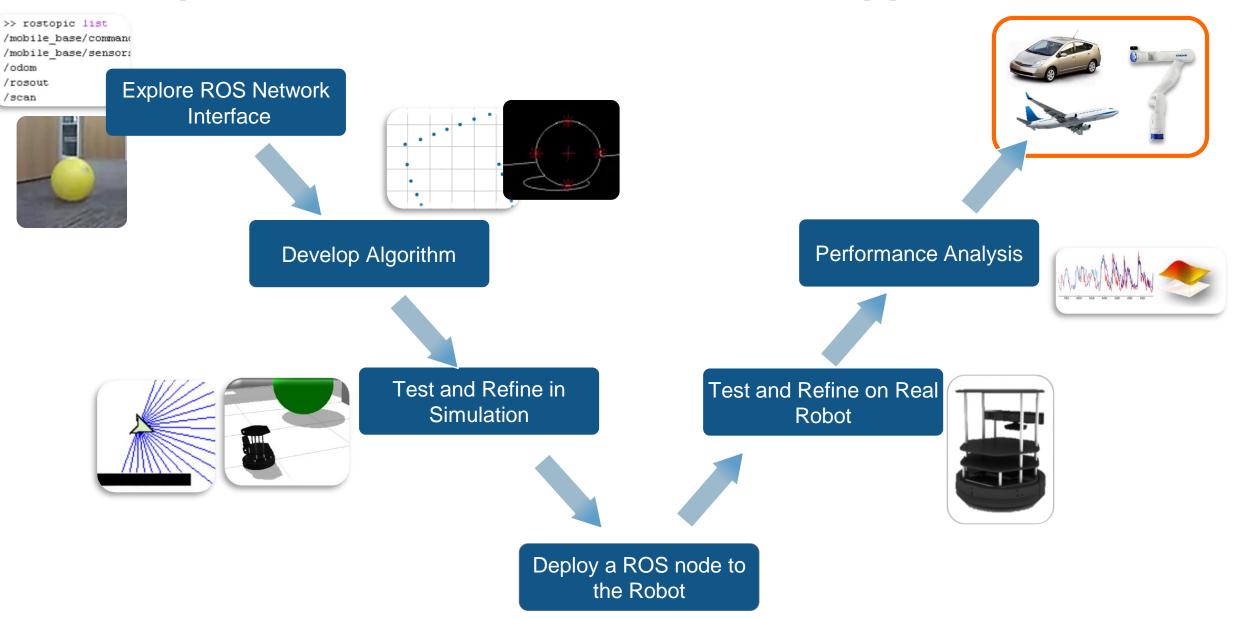
Example – Plan Mobile Robot Paths using RRT

- Load an existing occupancy map of a small office space
- Specify the state space of the vehicle
- Plan a path for a vehicle

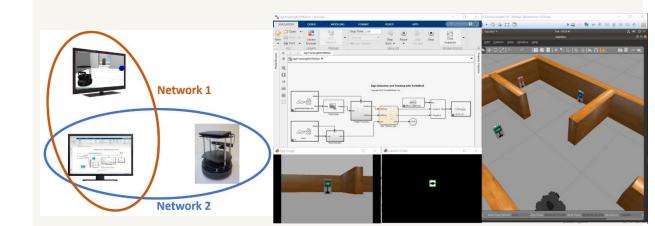


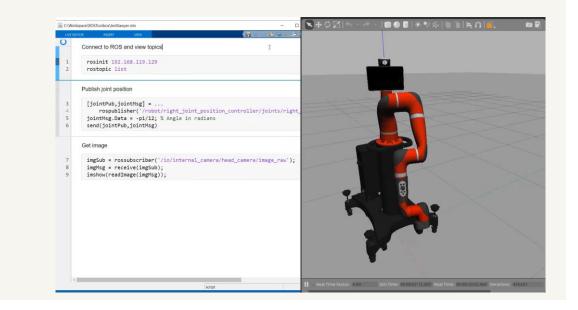

ROS – A Distribution in Software for Automation

- Open Source
- Established to prevent re-inventing the wheel
- Maintained by Open Robotics
- Reusable Software Components
- >1,000,000 user downloads/mo



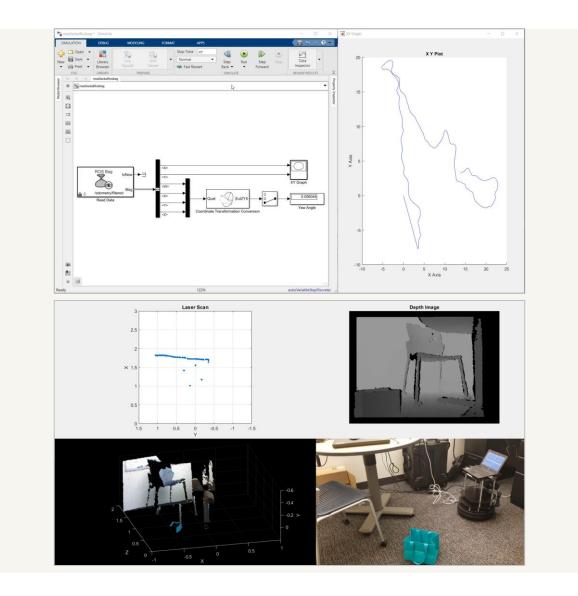
Why ROS? Growth and Adoption of ROS


Development Workflow for ROS-based Applications



ROS Toolbox

- ROS network and communication
 - Live connectivity from MATLAB and Simulink to ROS and ROS2



ROS Toolbox

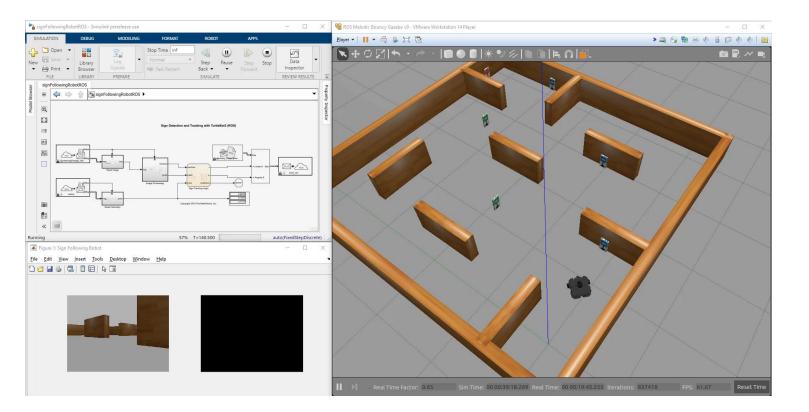
- ROS network and communication
 - Live connectivity from MATLAB and Simulink to ROS and ROS2
- ROS Message
 - rosbag data import and playback
 - Specialized ROS message

ROS Toolbox

- ROS network and communication
 - Live connectivity from MATLAB and Simulink to ROS and ROS2
- ROS Message
 - rosbag data import and playback
 - Specialized ROS message
- ROS node generation
 - Node generation from Simulink for prototyping and deploying autonomous systems

Hardware Test Control					9.9	0 -
Settings Point Panel	 Monitor MATLA8 	Build	signFollowROS2 2			
PREPARE	& Tune Workspace RUN ON HARDWARE REVIEW RESULTS	Model + DEPLOY	02.01 PM	re for model: signFollow805	2	
ag 🗢 🔅 signPollowROS2			### Generating code and ar	tifacts to 'Model specific'	folder structure	
€ tal signFollowR052 >		÷	Code Generation	hulld doldon, CilBenfactel	.GettingStartedTB3\realrobot\sig	wFalle #051 ant att
			### Invoking Target Lang	wage Compiler on signFollow	ROS2.rtw AB\R2019b\rtw\c\ert\ert.tlc	,
53	Sign Detection and Tracking with TurtleBo	ot3 (ROS 2)	### Loading TLC function ### Initial pass through	libraries model to cache user define		
्र स	Copyright 2019 The MathWorks, Inc.		### Caching model source	code		
	uNow	1				
		geometr				
<u>////</u> +	R. Mark					
/camera/rgb/mage_raw	Msg mg mg MotBoes	babBoxes v				
	Read Image blobdless	 bk65izes 				
	Image Processing	pose done				
	sPéser	Sign Tracking Logic				
dais-	n n					
/odom	Msg pose					
	Read Odometry	InNov				
	cheart	Mag				
		a_speed Mag				
		Mag		-		
	joint angle trajectory	Mag			1	
Interpolate the joint trajectory at 1	joint angle trajectory	Mag			1	
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj(j</pre>	joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples,	Mag				
Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj(j 'EndTime',repmat(diff(<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes),[7 1]));</pre>	Mag				
<pre>[q,qd,qdd] = trapveltraj(j 'EndTime',repmat(diff(waypointTimes = linspace(0)</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes(end),numSamples); ,waypointTimes(end),numSamples);</pre>	Mag				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj(j 'EndTime',repmat(diff()</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes(end),numSamples); ,waypointTimes(end),numSamples);</pre>	Mag				
Interpolate the joint trajectory at 1 in numSamples = waypointTimes [q,qd,qdd] = trapwoltraj(j) "EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac	<pre>int angle trajectory ins rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes();[7 1]); robot arm tionclient(</pre>	end by the first for				
<pre>Interpolale the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj(j 'EndTime',repmat(diff(waypointTime',repmat(diff(Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/my_gen3/gen3_joint_t</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes(end),numSamples); robol arm tionclient(rajectory_controller/follow_joint_tre</pre>	ajectory');				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapweltraj[] 'EndTime',repmat(diff(waypointTimes = linspace(0 Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/my_gen3/gen3_joint_t jointTimes = {'joint_1','j' packagePrecompJointTraject</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes),[7 1])); waypointTimes(end),numSamples); orobot arm tionclient(rajectory_controller/follow_joint_tra oint_2', joint_3', joint_4', joint_5' ory(traj30a,jointMames, ad, add, ways)</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolat the joint trajectory at 1 numSamples = waypointTimes [(q,qd,qdd] = trapveltraj() "EndTime", repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/my_gen3/gen3_joint_1','j dointNames = {'joint_1','j </pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes),[7 1])); waypointTimes(end),numSamples); orobot arm tionclient(rajectory_controller/follow_joint_tra oint_2', joint_3', joint_4', joint_5' ory(traj30a,jointMames, ad, add, ways)</pre>	ajectory'); ','joint_6','joint_7'}	;			
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj[] 'EndTime', repmat(diff(waypointTime' = linspace(0 Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/wy_gen3/gen3_joint_t jointNames = ('joint_1', 'j packagePrecompJointTraject sendGoal(trajAct,trajGoal)</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes);[7 1])); waypointTimes(end),numSamples); probot arm tionlient(rajectory_controller/follow_joint_tra oint_2','joint_3','joint_4','joint_5' ory(trajGoal,jointNames,q,qd,qdd,wayp; ;</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolat the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapwoltraj(] 'EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/wy_gen3/gen3_joint_' jointNames = {'joint_1','j packagePrecomplointTraject sendGoal(trajAct,trajGoal) Send gripper command actions alc</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes);[7 1])); waypointTimes(end),numSamples); probot arm tionlient(rajectory_controller/follow_joint_tra oint_2','joint_3','joint_4','joint_5' ory(trajGoal,jointNames,q,qd,qdd,wayp; ;</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj[] 'EndTime', repmat(diff(waypointTime' = linspace(0 Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/wy_gen3/gen3_joint_t jointNames = ('joint_1', 'j packagePrecompJointTraject sendGoal(trajAct,trajGoal)</pre>	<pre>int angle trajectory ms rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes(end),numSamples); robot arm tionclient(rajectory.controller/follow_joint_tra oint_2','joint_3','joint_4', 'joint_5' rory(trajGosl,jointNames,q,qd,qdd,wayp ; mg the trajectory</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapveltraj[] 'EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajact,trajGoal] = rosac '/wygen3/gena_joint_t jointNiames = {'joint_1','j packagePrecomplointTraject sendGoal(trajact,trajGoal) Send gripper command actions akd pause(6) [gripAct,gripGoal] = rosac '/wygen3/robotiq_2f_8</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes(end),numSamples); waypointTimes(end),numSamples); wrobot arm tionclient(rajectory.controller/follow_joint_tra oint_2','joint_3','joint_4','joint_5' ory(trajGoal,jointNames,a,ad,add,wayp; ; ung the trajectory tionclient(5_gripper_controller/gripper_cmd');</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolat the joint trajectory at 1 i numSamples = waypointTimes [(q,qd,qdd] = trapveltraj() "EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/my_gen3/gen3_joint_1 jointNiames = {joint_1,',' packagePrecompJointTraject] Send gripper command actions alc pause(6) [gripAct,gripGoal] = rosac '/my_gen3/roboti_2,fT gripGoal_Command.Position</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes(end),numSamples); waypointTimes(end),numSamples); probot arm tionclient(rajectory_controller/follow_joint_tra oint_2','joint_3','joint_4','joint_5' ory(trajGoal,jointNames,q,qd,qdd,wayp; ; ung the trajectory tionclient(<u>s_pripper_controller/gripper_cmd'</u>); = 0.75;</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [q,qd,qdd] = trapwoltraj(j "EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/my_gen3/gen3_joint_i jointNames = {'joint_i','j packagePrecompJointTraject sendGoal(trajAct,trajGoal) Send gripper command actions alc '/my_gen3/robotiq_2f_g gripGoal_Command.Position sendGoal(gripAct,gripGoal) = rosac '/my_gen3/robotiq_2f_g gripGoal_Command.Position sendGoal(gripAct,gripGoal) pause(3)</pre>	<pre>int angle trajectory joint angle trajectory ms rate (end)*1000 + 1; ointWaypointS,numSamples, waypointTimes(end),numSamples); waypointTimes(end),numSamples); robot arm tionclient(rajectory_controller/follow_joint_tra oint_2','joint_3','joint_4','joint_5' org(trajGoal,jointNames,q,qd,qdd,wayp; interpret to the sectory tionclient(s_gripper_controller/gripper_cmd'); ; ;</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolate the joint trajectory at 1 i numSamples = waypointTimes [4,qd,qdd] = trapveltraj() 'EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/ww_gen3/gena_joint_t' jointtimes = {'joint_1','j packagePrescompJointTraject sendGoal(trajAct,trajGoal) Send gripper command actions ald pause(6) [gripAct,gripGoal] = rosac '/ww_gen3/roboinc_2f_B gripGoal.Command.Position pripGoal.Command.Position</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes(end),numSamples); waypointTimes(end),numSamples); wrobd arm tionclient(robint_2','joint_3','joint_f' ory(trajGoal,jointWames,q,qd,qdd,wayp; ; ung the trajectory tionclient(s_pripper_controller/gripper_cmd'); = 0.75; ; = 0;</pre>	ajectory'); ','joint_6','joint_7'}				
<pre>Interpolat the joint trajectory at 1 i numSamples = waypointTimes [(q,qd,qdd] = trapveltraj() "EndTime',repmat(diff(waypointTimes = linspace(0) Send a joint trajectory action to the [trajAct,trajGoal] = rosac '/wy_gen3/gen3_joint_traject jointNiames = {joint_1,','j packagePrecompJointTraject sendGoal(trajAct,trajGoal) Send gripper command actions ald pause(6) [gripAct,gripGoal] = rosac '/wy_gen3/robotiq_2f_g gripGoal.Command.Position sendGoal(gripAct,gripGoal) pause(3)</pre>	<pre>joint angle trajectory ms rate (end)*1000 + 1; ointWaypoints,numSamples, waypointTimes(end),numSamples); waypointTimes(end),numSamples); wrobd arm tionclient(robint_2','joint_3','joint_f' ory(trajGoal,jointWames,q,qd,qdd,wayp; ; ung the trajectory tionclient(s_pripper_controller/gripper_cmd'); = 0.75; ; = 0;</pre>	ajectory'); ','joint_6','joint_7'}				

MATLAB/Simulink ROS Functionality


H ROS	::: 2	ROS ROS 2
 Topic – Pub / Sub Service – Server / Client Action – Client Parameter Server – Get/Set Custom Message rosbag read 	 Topic – Pub / Sub Custom Message 	 Read Data Read / Write Image Read Point Cloud Read Occupancy Map
 Topic – Pub / Sub Service – Call Parameter – Get / Set ROS Time rosbag playback Code Generation 	 Topic – Pub / Sub Code Generation 	 Read Data Read Image Read Point Cloud

HUMUSOFT ROS Toolbox enables you to communicate with a ROS Traditional ROS users MATLAB rosbag import ROS (Robot Operating System) Initialize the ROS system rosinit Shut down the ROS system rosshutdowr Create a ROS message Create a ROS publishe Create a ROS subscriber Create a ROS service clie rossvcclien reate a ROS service serve ossvcserv osactioncl reate a ROS action clien **Robot hardware & Sensors** iew available ROS message rosactio Get information about acti Get information about mess rosmsg rosnode Get information about nodes rosservic Get information about serv rostopi Get information about top: rosbag Open and parse a rosbag lo **HROS** rospara Get and set values on the rosrate Execute fixed-frequency 1 rostf Receive, send, and apply R Simulink Simulation environment t ROS Bag TcNew ROS ROS /my_topic /my_topic Read Data C++ Code Generation XYZ Generated 01010 0 \odot ErrorCode ErrorCode **ROS** node & Auto Deployment /mv service Blank Message Call Service Read Image Read Point Cloud ROS ROS ROS ____ ErrorCode /my_topic /my_param Embedded targets /mv paran Current Time Get Parameter Subscribe Set Parameter

Example – Sign-following Robot

- Detect the color of the sign and send the velocity commands to turn the robot
- Connect with ROS-enabled simulator, i.e., Gazebo
- And connect with hardware

Thank you