

Reinforcement Learning with MATLAB & Simulink

Christoph Stockhammer

MathWorks Application Engineering

Machine Learning, Deep Learning, and Reinforcement Learning

MathWorks

Machine Learning, Deep Learning, and Reinforcement Learning

MathWorks

A MathWorks

Machine Learning, Deep Learning, and Reinforcement Learning

Reinforcement Learning vs Machine Learning

Reinforcement Learning Toolbox New in R2019a

Reinforcement learning:

- Learning a behavior or accomplishing a task through trial & error [*interaction*]
- Complex problems typically need deep models [Deep Reinforcement Learning]

Reinforcement Learning enables the use of Deep Learning for Controls and Decision Making Applications

Finance

Robotics

A.I. Gameplay

Autonomous driving

Why is reinforcement learning appealing?

Teach a robot to follow a straight line using camera data

Let's try to solve this problem the traditional way

What is the alternative approach?

A Practical Example of Reinforcement Learning Training a Robot to Walk

- Robot's computer learns how to walk... (agent)
- using sensor readings from joints, torso,...
 (state)
- that represent robot's pose and orientation,...
 (environment)
- by generating joint torque commands,... (action)
- based on an internal state-to-action mapping...
 (policy)
- that tries to optimize forward locomotion, ...
 (reward).
- The policy is updated through repeated trialand-error by a reinforcement learning algorithm

Connections with Controls

Define Environment to Generate Data

Walking Robot: Reinforcement Learning (2D)

Physical modeling of robot dynamics and contact forces using Simscape

The environment provides 29 observations to the agent.

The observations are: Y (lateral) and Z (vertical) translations of the torso center of mass; X (forward), Y (lateral), and Z (vertical) translation velocities; yaw, pitch, and roll angles of the torso; yaw, pitch, and roll angular velocities; angular position and velocity of 3 joints (ankle, knee, hip) on both legs; and previous actions from the agent. The translation in the Z direction is normalized to a similar range as the other observations.

Define Environment to Generate Data

Walking Robot: Reinforcement Learning (2D)

Reward defines task to learn

Define Environment to Generate Data

$$r_t = v_x - 3y^2 - 50\hat{z}^2 + 25\frac{\text{Ts}}{\text{Tf}} - 0.02\sum_i u_{t-1}^{i^2}$$

- v_x is the translation velocity in X direction (forward toward goal) of the robot.
- y is the lateral translation displacement of the robot from the target straight line trajectory.
- uⁱ_{t-1} is the torque from joint i from the previous time step.
- · Ts is the sample time of the environment.
- Tf is the final simulation time of the environment.

*Reward function inspired by: N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments," Technical Report, ArXiv, 2017. 14

Define Policy and Learning Algorithm

Walking Robot: Reinforcement Learning (2D)

Code for Configuring Agent and Training

Create Environment Interface

Create the observation specification.

```
numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';
```

Create the action specification.

```
numAct = 6;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actInfo.Name = 'foot_torque';
```

Create the environment interface for the walking robot model.

```
blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);
env.ResetFcn = @(in) walkerResetFcn(in,upper_leg_length/100,lower_leg_length/100,h/100);
```


Create Critic Network

📣 Deep Network Designer		– 🗆 X
DESIGNER		?
Import Import <td>Auto Analyze Export</td> <td></td>	Auto Analyze Export	
FILE BUILD NAVIGATE	LAYOUT ANALYSIS EXPORT	
Filter layers	dbservation imageInputLayer	fullyConnectedLayer
imageInputLayer	CriticStateFC1 fullyConnected	Name CriticStal
image3dInputLayer	CriticStateRelu1	InputSize 29 OutputSize 400
SequenceInputLayer		Weights [400×29 double]
roilnputLayer	CriticStateFC2 tulyConnected	Bias double]
CONVOLUTION AND FULLY CO		
convolution2dLayer	. add	WeightL2Factor 1 BiasLearnRateFactor 1
convolution3dLayer	CriticCommon	BiasL2Factor 0
groupedConvolution		BiasInitializer glorot zeros
transposedConv2dL ▼	CriticOutput TullyConnected	

Create Actor Network

📣 Deep Network Designer - 🗆 🗙							×			
DESIGN	ER					AH		KK KU H		?
New Impor	t Duplicate	кл и м Fit			Anakize	✓				
New Impor	Paste	to View	20011 001	Arrange	Analyze	-				_
FILE	BUILD	N	AVIGATE	LAYOUT	ANALYSIS	EXPORT				· · · · · · · · · · · · · · · · · · ·
LAYER LIB	RARY	2					×	PROPERTIES		0
Filter layer	S				observ imagel	vation InputLayer		tanhl aver		
INPUT		*								
🕰 in	nageInputLayer	_			ActorF tulyCo	C1 mected		Name	Act	orTan
in 🖾	nage3dInputLayer				Actor	Relu1				
M se	equenceInputLayer				- Heidea	yar				
ro 🕰	bilnputLayer				ActorF fullyCo	C2 innected				
CONVOLU	TION AND FULLY CO									
R co	onvolution2dLayer				ActorF reluLa	kelu2 yer				
et 🕅	onvolution3dLayer				Actor tulyCo	FC3				
🖳 gi	roupedConvolution									
天 tra	ansposedConv2dL	•			Actor tanhLa	Janh1 Iyor				hl
14										P1

Create DDPG Agent

Specify options for the critic and actor representations using rlRepresentationOptions.

```
criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3, ...
'GradientThreshold',1,'L2RegularizationFactor',1e-5);
actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-4, ...
'GradientThreshold',1,'L2RegularizationFactor',1e-5);
```

Create the critic and actor representations using the specified deep neural networks and options. You must also specify the action and observation information for each representation, which you already obtained from the environment interface. For more information, see rlRepresentation.

```
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'action'},criticOptions);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'ActorTanh1'},actorOptions);
```

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

```
agentOptions = rlDDPGAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 128;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 1;
agentOptions.NoiseOptions.Variance = 0.1;
```

Then, create the DDPG agent using the specified actor representation, critic representation, and agent options. For more information, see rlDDPGAgent.

Training the Agent

```
maxEpisodes = 20000;
maxSteps = Tf/Ts;
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxEpisodes,...
'MaxStepsPerEpisode',maxSteps,...
'ScoreAveragingWindowLength',250,...
'Verbose',false,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',100,...
'SaveAgentCriteria','EpisodeReward',...
'SaveAgentValue',150);
```

To train the agent in parallel, specify the following training options.

- Set the UseParallel option to true.
- Train the agent in parallel asynchronously.
- After every 32 steps, each worker sends experiences to the host.
- DDPG agents require workers to send 'Experiences' to the host.

```
trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';
```

📣 MathWorks[®]

Train Robot to Walk and Track Progress

A MathWorks[®]

Train Robot to Walk and Track Progress

Deploy Policy to Embedded Device

Everything is Great, Right?

$$\Gamma_{t} = \mathcal{V}_{x} + 0.0625 - 50 \tilde{t}^{x}$$

Simulation and Virtual Models are a Key Aspect of Reinforcement Learning

- Reinforcement learning needs <u>a lot</u> of data (sample inefficient)
 - Training on hardware can be prohibitively expensive and dangerous
- Virtual models allow you to simulate conditions hard to emulate in the real world
 - This can help develop a more robust solution
- Many of you have already developed MATLAB and Simulink models that can be reused

Pros & Cons of Reinforcement Learning

Pros	Cons		
No need to label data before training	A lot of simulation trials required		
Complex end-to-end solutions can be developed (e.g. camera input \rightarrow car steering wheel)	Reward signal design, network layer structure & hyperparameter tuning can be challenging		
Can be applied to uncertain, nonlinear environments	No performance guarantees, Training may not converge		
Virtual models allow simulations of varying conditions and training parallelization	Further training might be necessary after deployment on real hardware		

Reinforcement Learning Toolbox New in R2019a

- Built-in and custom algorithms for reinforcement learning
- Environment modeling in MATLAB and Simulink
- Deep Learning Toolbox support for designing policies
- Training acceleration through GPUs and cloud resources
- Deployment to embedded devices and production systems
- Reference examples for getting started

Reinforcement Learning Toolon¹¹ provides functions and block for training policies using reinforcement learning algorithms including DON, A2C, and DDPO, You can use these policies to implement controllers and decision-making algorithms for complex systems such as robots and autonomous systems. You can implement the policies using deep neural networks, supromaria, or (lock patabes,

The toolbox lets you train policies by enabling them to interact with environments represented by MATLAB² or Smulnik⁴ models. You can evaluate algorithms, experiment with hyperparameter settings, and montot training progress. To improve training performance, you can run simulations in parallel on the cloud, computer clusters, and GPUs (with Parallel Computing Toolbox.¹⁴ and MATLAB Parallel Server¹⁴).

Through the ONNXTM model format, existing policies can be imported from deep learning frameworks such as TensorFlowTM Keras and PyTorch (with Deep Learning ToolboxTM). You can generate optimized C, C++, and CUDA code to deploy trained policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design controllers for robotics and automated driving applications.

Training and Validation Train and simulate reinforcement learning agents

Policy Deployment Code generation and deployment of trained policies

Predefined Environments and Many Examples

- MATLAB Environment
 - 'BasicGridWorld'
 - 'CartPole-Discrete'
 - 'CartPole-Continuous'
 - 'DoubleIntegrator-Discrete'
 - 'DoubleIntegrator-Continuous'
 - 'SimplePendulumWithImage-Discrete'
 - 'SimplePendulumWithImage-Continuous'
 - 'WaterFallGridWorld-Stochastic'
 - 'WaterFallGridWorld-Deterministic'

- Simulink Environment
 - 'SimplePendulumModel-Discrete'
 - 'SimplePendulumModel-Continuous'
 - 'CartPoleSimscapeModel-Discrete'
 - 'CartPoleSimscapeModel-Continuous'

- Examples
 - Grid World, MDP
 - Classical Control Benchmarks
 - Automotive
 - Robotics
 - Custom LQR Agent

Extensible Environment Interface

- env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn)
 - obsInfo: Observation Specification
 - actInfo: Action Specification
 - stepfcn: Function handle for stepping the environment
 - resetfcn: Function handle for resetting the environment

- Subclassing from rl.env.MATLABEnvironment
 - Custom MATLAB Environments
 - Interfacing with 3rd party simulators (e.g. OpenAI Gym)

Resources

- Reference examples for controls, robotics, and autonomous system applications
- Documentation written for engineers and domain experts
- Tech Talk video series on reinforcement learning concepts for engineers

Reinforcement Learning Toolbox New in R2019a

- Built-in and custom algorithms for reinforcement learning
- Environment modeling in MATLAB and Simulink
- Deep Learning Toolbox support for designing policies
- Training acceleration through GPUs and cloud resources
- Deployment to embedded devices and production systems
- Reference examples for getting started

Reinforcement Learning Toolon¹¹ provides functions and block for training policies using reinforcement learning algorithms including DON, A2C, and DDPO, You can use these policies to implement controllers and decision-making algorithms for complex systems such as robots and autonomous systems. You can implement the policies using deep neural networks, supromaria, or (lock patabes,

The toolbox lets you train policies by enabling them to interact with environments represented by MATLAB² or Smulnik⁴ models. You can evaluate algorithms, experiment with hyperparameter settings, and montot training progress. To improve training performance, you can run simulations in parallel on the cloud, computer clusters, and GPUs (with Parallel Computing Toolbox.¹⁴ and MATLAB Parallel Server¹⁴).

Through the ONNXTM model format, existing policies can be imported from deep learning frameworks such as TensorFlowTM Keras and PyTorch (with Deep Learning ToolboxTM). You can generate optimized C, C++, and CUDA code to deploy trained policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design controllers for robotics and automated driving applications.

Training and Validation Train and simulate reinforcement learning agent:

Policy Deployment Code generation and deployment of trained policies

Questions?