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Abstract

In this paper we demonstrate the behavior of numerical integration algorithms
in situations where the integrands are inaccurately evaluated functions. These
problems can occur among others in mathematical finance, e.g. in calibrating
option pricing models to real market data. Integrals usually depend on several
model parameters and the optimization task consists of large number of inte-
gral evaluations with high precision and low computational time requirements.
We show that an adaptive quadrature algorithm implemented in the MATLAB’s
function integral fails to meet these requirements, since we can observe an enor-
mous increase in function evaluations, serious precision problems as well as
a significant increase of computational time. We demonstrate such behavior
on a simplified integrand and we discuss the possible modifications of the inte-
gration process to solve the raised issues.

1 Introduction

In mathematical finance, a process of calibrating option pricing models to real market data is
usually formulated as an optimization problem of nonlinear least squares (Mrázek et al., 2014,
2015). In this paper we focus on the continuous-time stochastic volatility (SV) models whose
pricing formulas are often available in the semi-closed form - they involve an infinite-domain
integral that has to be calculated numerically. Although there exist many SV models that could
be studied independently, we take advantage of a recent results by Baustian et al. (2015) who
introduced a unifying approach to stochastic volatility jump-diffusion (SVJD) models covering
among others the popular SV model by Heston (1993), SVJD model by Bates (1996) as well
as the recently proposed asymptotically fractional SVJD model (Posṕı̌sil and Sobotka, 2015).
Numerical problems discussed in this paper therefore occur not only in the unifying formula,
but also in all original models that are widely used in practice.

Structure of the paper is as follows. In Section 2 we introduce the problem of numeri-
cal integration of inaccurately evaluated functions that occur in pricing formulas for stochastic
volatility models. In Section 3 we perform the numerical analysis. At first we explain the nume-
rical behavior using a simplified problem and then perform a comparison of different quadratures
for the original problem. We conclude in Section 4.

2 Problem description

Let us consider a unifying formula (Baustian et al., 2015) for the Bates (1996) SVJD model.
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When calculating numerically the above integral, some values of the model parameters can
affect the accuracy of the integrand when using the standard floating point arithmetic (double),
where significant digits can get lost. Let us consider the following data and parameter values:

S = 6721.8, v = 0.97114, τ = 0.120548, K = 6250, r = 0.009, λ = 11.70271, µJ = −6.65876,
σJ = 1.0069, θ = 0.95333, κ = 17.6751, ρ = −0.86219 and σ = 0.000028.

If we depict the integrand over the interval [0, 10], for the first sight we observe a “nice”
smooth-looking function (see Figure 1). However, when we use a finer discretization and zoom
in, a neighborhood of the point 3 does not look smooth anymore (see the blue curve in Figure 2).
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Figure 1: Global view of integrated function - wider horizon.

This effect is caused by an insufficient precision arithmetic used and in the graph of the
integrand we can observe jumps. Size and frequency of the jumps depends also on the value of
the independent variable k, i.e. jump sizes decrease with k, but the frequency increases.

We can use the variable-precision arithmetic (vpa) and specify the number of significant
digits to obtain a better precision when evaluating the integrand. In Figure 2, the red curve
represents the same integrand evaluated using precision to 32 significant digits. It is depicted
at the same discrete points and we can see that it does not contain jumps anymore.

Let us now try to integrate the considered function in the given region [0, 10]. If we use
the standard floating-point arithmetic that is used by the MATLAB’s function integral, there
is a certain chance to get into troubles. Using the default tolerance values ’AbsTol’=1e-6 and
’RelTol’=1e-6, the function integral returns the value 0.776588380039885 in ca 0.73 [sec]



(measured by functions tic and toc on a reference computer: dual core Intel i7, 2.9GHz, 64bit
Windows 10, MATLAB R2015a). This calculation requires 150 function evaluations (fevals) used
by the adaptive algorithm. Although all these values seem to be acceptable, a slight change in
one of the parameters can cause significantly different behavior. If we change the value of σ from
the original value 0.000028 to a new value 0.000022 and we keep all the other values unchanged,
we get the value of the integral 0.776583174460231, it is calculated in ca 3.82 [sec] and the
number of fevals during the adaptive algorithm grows to 127680.

We could decrease the tolerance (’AbsTol’ and ’RelTol’) requirements to overcome this
dramatic increase in number of fevals, however, for optimization problems that occur during the
calibration process, high precision results and low computation times are requisite.

To explain the different behavior of function integral for almost identical input data, we
have to realize that a requested tolerance is tested in each iteration of the adaptive quadrature
algorithm and it is influenced by the imprecision jumps in the integrand. If we apply the
integration procedure to function that is evaluated using the variable-precision arithmetic (vpa),
then in both above cases the integral routine requires 180 function evaluations.

In Table 1 we can observe a computation time increase when using vpa compared to
double, which is caused by rather complicated formula for the integrand. On the other hand,
integral in the problematic case (σ = .000022) is computed in a comparable time. As for the
accuracy, only the result using vpa can be considered trustworthy.

Table 1: Comparison for two different input parameters.

value of integral time [sec] fevals

σ = .000028 double 0.776588380039885 0.73 150
vpa 0.776585856534337 4.63 180

σ = .000022 double 0.776583174460231 3.82 127680
vpa 0.776585856549349 4.49 180

In formula (1), the integral should be calculated over the infinite domain [0,∞), for in-
creasing argument the integrand goes to zero rather quickly. In practice we consider only finite
length domains. In Figure 3 we can see the integrand over the interval [0, 100].

In Tables 2 and 3 we can compare results for different integration domains for both cases
σ = .000028 and σ = .000022 respectively. Whereas in the former case, the behavior (time and
number of fevals) is rather unexpectable, in the latter case we can observe that with the higher
upper integration bound we get the higher computation time and more fevals is needed. In both
cases, when using vpa, fevals increase only from 180 to 270 whereas in double case they blow
up to 112350 or 526620 respectively. Values of the integral evaluated for two different values of
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Figure 2: Detailed view of the integrand.
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Figure 3: Global view to integrated function.

σ differ in the vpa case only over the interval [0, 10] (the first row in both tables) as described
above.

As for the computation times, for upper integration bounds 30 and above, calculations
using vpa are faster (and more precise) than those using double. This is caused by extremely
large number of fevals in the latter case while in vpa case it remains relatively low. As for the
integration values, standard double precision is rather low and the values of the integral are for
both values of σ the same provided that the upper integration bound is grater than 20. The
value obtained by vpa converges to the exact value faster.

Table 2: Comparison for different integration domains, case σ = .000028.

double vpa

value of integral time [sec] fevals value of integral time [sec] fevals

[0, 10] 0.776588380039885 0.73 150 0.776585856534337 4.63 180

[0, 20] 0.776580751834288 0.04 180 0.776578226075433 5.53 210

[0, 30] 0.776578160122915 1.78 55800 0.776578226075448 5.48 210

[0, 40] 0.776580762365733 0.04 210 0.776578226075447 6.31 240

[0, 50] 0.776578273605539 0.71 22680 0.776578226075473 6.40 240

[0, 60] 0.776578215111363 2.72 88170 0.776578226075448 6.23 240

[0, 70] 0.776578753464731 0.05 540 0.776578226075336 6.30 240

[0, 80] 0.776580740711720 0.05 270 0.776578226075448 7.03 270

[0, 90] 0.776578061270396 3.44 112350 0.776578226075419 7.06 270

[0, 100] 0.776578145241924 1.74 54360 0.776578226075483 7.02 270

3 Numerical analysis

At first let us explain the behavior described in the previous section using a simplified problem
that we can obtain by a successive simplification of the original integrand. Let us consider the
following function that has similar properties:

function result=f_double(x);

sigma = 1e-9;

a = x + 1000./ sigma;

b = (a.^2+(x.^2)./sigma).^.5;

result = a.^2-b.^2;

end

We can analytically simplify this formula even further to:



Table 3: Comparison for different integration domains, case σ = .000022.

double vpa

value of integral time [sec] fevals value of integral time [sec] fevals

[0, 10] 0.776583174460231 3.82 127680 0.776585856549349 4.49 180

[0, 20] 0.776575614352789 4.87 165180 0.776578226092740 5.20 210

[0, 30] 0.776575576765266 6.98 236760 0.776578226092755 5.18 210

[0, 40] 0.776575531502838 5.94 198930 0.776578226092754 5.92 240

[0, 50] 0.776575627836667 11.13 379110 0.776578226092780 5.94 240

[0, 60] 0.776575609084378 9.55 324090 0.776578226092755 5.89 240

[0, 70] 0.776575652981054 8.99 308220 0.776578226092643 5.91 240

[0, 80] 0.776575593708892 15.37 526620 0.776578226092756 6.65 270

[0, 90] 0.776575594664419 15.04 492270 0.776578226092727 7.25 270

[0, 100] 0.776575640834488 14.79 505230 0.776578226092791 6.65 270

function result=f_exact(x);

sigma = 1e-9;

result = -(x.^2)./ sigma;

end

Our function implemented using vpa looks as follows:

function result=f_vpa(x,dig);

old=digits(dig);

sigma = vpa(1e-9);

a = vpa(x + 1000./ sigma);

b = vpa((a.^2+(x.^2)./sigma).^.5);

result = vpa(a.^2-b.^2);

result = double(result);

digits(old);

end

In Figures 4-7 there are graphs of studied functions depicted over the interval [0, 10] or
in a neighborhood of number 3. Function f_double(x) is blue and functions f_exact(x) and
f_vpa(x) are both red.

Let us now integrate functions f_double(x) and f_vpa(x) over the interval [0, 10] using
function integral with ’AbsTol’=1e-6 and ’RelTol’=1e-6.

To calculate the integral of f_double(x) we needed 7.64 [sec], 492300 fevals and the
inaccurate result was −3.333305894598757e + 11. For function f_vpa(x) we needed 2.83 [sec],
150 fevals and the result −3.333333333333333e+11 was obtained accurately. In the first case, the
function integral may produce the following warning indicating that there might be something
wrong with the calculation.

Warning: Reached the limit on the maximum number of intervals

in use. Approximate bound on error is 6.8e+07. The integral

may not exist , or it may be difficult to approximate numerically

to the requested accuracy.

> In funfun\private\integralCalc >iterateArrayValued at 282

In funfun\private\integralCalc >vadapt at 130

In funfun\private\integralCalc at 75

In integral at 88



0 1 2 3 4 5 6 7 8 9 10

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

x 10
10

Figure 4: Global view to f double(x) (blue) and f vpa(x) (red).
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Figure 5: Detailed view to f double(x) (blue) and f vpa(x) (red).

The influence of the lower relative tolerance is such that for example for ’RelTol’=1e-3 fe-
vals will be in both cases only 150, however the result−3.332756082277576e+11, for f_double(x)
will be even less accurate whereas for f_vpa(x) we get again −3.333333333333333e+ 11.

Let us now have a closer look (see Table 4) to results obtained at different integration
domains, in particular over the intervals [0, 1], [0, 2] up-to [0, 10]. For f_double(x) and an upper
bound 3 and higher MATLAB returns also the same type of warning message. We can again
observe a remarkable differences in number of fevals and in obtained accuracy. For f_vpa(x)

the results are accurate to requested number of significant digits. Calculation times are almost
identical in both cases, times are smaller for f_vpa(x). Furthermore, for intervals [0, 1] and
[0, 2] the computation times and number of fevals were bigger.

So far we have used only the function integral (available in MATLAB since 2012) that
implements the adaptive Gauss7Kronrod15 quadrature (Shampine, 2008, 2010). MATLAB offers
also several other quadratures although they remain in the distribution as unsupported. In Table
5 we can compare the results of integration of both functions f_double(x) and f_vpa(x) over
the interval [0, 10] using functions integral, quad (adaptive Simpson’s rule), quadl (adaptive
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Figure 6: Detailed view to f double(x) (blue) and f vpa(x) (red).
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Figure 7: Detailed view to f double(x) (blue) and f vpa(x) (red).

Table 4: Integration of f double(x) and f vpa(x) over different domains.

f double(x) f vpa(x)

value of integral time fevals value of integral time fevals

[0, 1] -3.288591668013657e+08 18.16 1165980 -3.333333333333333e+08 2.88 150

[0, 2] -2.662111340106951e+09 32.68 2172660 -2.666666666666667e+09 2.79 150

[0, 3] -8.996295897959026e+09 9.51 617760 -8.999999999999998e+09 2.84 150

[0, 4] -2.132780923861364e+10 6.63 422280 -2.133333333333333e+10 3.26 150

[0, 5] -4.166115942073217e+10 6.91 449250 -4.166666666666666e+10 2.95 150

[0, 6] -7.200721626636041e+10 6.40 415740 -7.199999999999999e+10 2.73 150

[0, 7] -1.143302905838337e+11 7.30 472020 -1.143333333333333e+11 2.75 150

[0, 8] -1.706596836888415e+11 7.63 480510 -1.706666666666667e+11 2.71 150

[0, 9] -2.429973311534886e+11 7.53 484920 -2.429999999999999e+11 2.84 150

[0, 10] -3.333305894598757e+11 7.64 492300 -3.333333333333333e+11 2.83 150



Gauss-Lobatto quadrature, Gander and Gautschi (2000)) and trapz (simple trapezoidal rule).

Table 5: Integration of f double(x) and f vpa(x) using different methods.

f double(x) f vpa(x)

value of integral time value of integral time

integral -3.333305894598757e+11 7.64 -3.333333333333333e+11 2.83

quad -3.330331572927783e+11 0.16 -3.333333333333333e+11 0.10

quadl -3.388795564650947e+11 0.09 -3.333333333333334e+11 0.08

trapz step=1e-2 -3.333619397427199e+11 0.0007 -3.333335000000002e+11 1.83
step=1e-3 -3.333298617057282e+11 0.0018 -3.333333350000001e+11 3.52
step=1e-4 -3.333293382565890e+11 0.01 -3.333333333500004e+11 33.39
step=1e-5 -3.333285611359462e+11 0.06 -3.333333333334993e+11 355.83

Both quad and quadl when integrating the function f_double returns also the following
warning message

Warning: Maximum function count exceeded; singularity likely.

> In quad at 98

or

Warning: Maximum function count exceeded; singularity likely.

> In quadl at 98

respectively.

From the comparison we can read that the fastest was trapz for inaccurate function
f_double(x), the precision is however far from being satisfactory. Using trapz for accurate
function f_vpa(x) is on the other hand time consuming. Using quadratures quad and quadl

for accurately evaluated function f_vpa(x) keeps the computation time low with attaining the
required precision.

Let us now perform a similar comparison for the original problem (calculating the integral
in formula (1)). In Table 6 we extend the results from Table 3 (function integral for double and
vpa) by results obtained by quad and quadl over different integration domains. We can observe
that both quad and quadl are faster than integral. Let the values obtained by integral (vpa)
be reference values. From Table 6 we can read that quadl is sufficiently precise (see the red
values), but several times (ca 4− 5 times) faster than integral (vpa).

4 Conclusion

In this paper we aimed at numerical evaluation of the integral from formula (1) for the Bates
stochastic volatility jump-diffusion model. There are several data and model parameters with
specified simple (lower and upper) bounds and during the calibration process (fitting model
parameters to real market data) all values in these bounds can be reached. In this optimization
task, the integral is evaluated many times (ca in orders of thousands, each time with different
parameter values) and if there are a lot of options (there are usually ca 100-200 options per
asset per day in one calibration task) the value of the integral must be calculated sufficiently
accurately (with relative error ca 1e-9).

In several calibration tasks we performed on real market data, we noticed that particular
parameter values extremely slowed down the numerical integration. A deeper analysis showed
that the numerically integrand (that is supposed to be regular and smooth) is evaluated inac-
curately (with discontinuities) due to insufficient arithmetic precision (double). It is worth to
mention that this misbehavior is rather rare and in many combinations of admissible parameter
values the standard (double) precision is sufficient for evaluating the integral and a better (vpa)
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precision is not needed, since the values obtained by the adaptive Gauss7Kronrod15 quadrature
implemented in function integral is fast and sufficiently accurate.

On the other hand, for some parameter values, the standard (double) accuracy is insuffi-
cient and causes serious troubles in the numerical integration and it is necessary to use a better
(vpa) arithmetic precision. Since the integrand is a rather complicated function, its evaluation
in vpa is time consuming. We have showed that having an accurately evaluated functions can
lower significantly the number of function evaluations in the adaptive numerical quadratures
and consequently can lower computation times and especially we get more accurate results of
the integration.

Thorough testing showed that sufficiently accurate results can be obtained significantly
faster by the Gauss-Lobatto quadrature implemented in function quadl (and using the vpa for
the integrand evaluation of course).

Further study of different numerical quadratures and modified techniques for adaptive
integration is requisite and it is now an ongoing research.
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