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Abstract 

The first part of this paper is devoted to mathematical modelling of motorcycle 
dynamics. A nonlinear 5DOF model of a motorcycle is developed using Lagrange 
equations. This approach enables to simulate large displacement analyses as well as 
the contact between tires and road. The set of nonlinear differential equations is 
solved using constant average acceleration method in MATLAB. The results of 
multibody dynamics simulation are verified using VI-Motorcycle plugin for 
Adams/Car and they are used as boundary conditions for FEM analyses.  

The second part of this paper is focused on experimental analysis of motorcycle 
dynamics.  A measuring system containing three accelerometers was developed and 
used for rider vibration exposure analysis. Data from 12.6-kilometer testing track 
were processed using MATLAB and evaluated according to ČSN ISO 2631. 

  

1 Nonlinear mathematical model of a motorcycle 
First step of the solution process is to develop a nonlinear mathematical model of a motorcycle. 

A planar 5-degre-of-freedom model was proposed with following generalized coordinates: x2 – frame 
horizontal translation; y2 – frame translation; φ2 – frame pitch angle; y3 – front assembly vertical 
translation; y4 – rear assembly vertical translation. A scheme of the model containing generalized 
coordinates as well as other parameters is shown in Fig. 1. 
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Figure 1: Scheme of the model 

The generalized coordinates are included in vector q as shown in equation 1. 
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Lagrange equations (eq. 2) were used to develop equations of motion of the system. 
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Where Ek, Ep and R represent kinetic energy function, potential energy function and Rayleigh 
dissipation function of the system. 
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The stiffness matrix and the damping matrix are both not constant and depend on the generalized 
coordinate φ2 which means the system is nonlinear and able to provide more accurate results as 
displacements increase. However, this also places requirements on the integration method of the 
motion equations itself. 

 

1.1 Tire contact model 

Interaction between tires and road is a significant source of forces that act on the frame. In this 
case longitudinal driving and braking forces are neglected and the key task is to obtain normal contact 
forces. As stated previously the whole model is planar therefore lateral cornering forces are not taken 
into account either. The model of the tire contact is shown in Figure 2. 
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Figure 2: Tire contact model 



Let’s assume that the location of tire center in known at any time. In case that any point of road 
surface is closer to the tire center than tire radius a contact pressure exerting on the tire can be 
calculated as 

 
 ckp pk   (6) 

 

Where kp describes stiffness characteristics of the tire and c is the difference between the tire radius 
and the distance. Differential normal force can be obtained according to eq. 6. 

 
 cdskdN p  (7) 

 

Differential ds relates to tire arc. Differential normal force is always perpendicular to the road surface. 
For our problem it is crucial to determine its components in horizontal and vertical direction. This can 
be accomplished by using derivative of road function as described in the following equations. 
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In order to determine the components of the actual normal force, integration is conducted as the very 
last step. 
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The tire contact model proposed above is based on elastic contact model. Tire hysteresis effects can be 
taken into consideration as well assuming damping forces have similar character to normal contact 
forces as stated in the following equation. 
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The variable  from previous equation relates to tire deformation rate. 

2 Numerical integration of the equations of motion 

Once we acquired the forces acting on tires we can proceed to the solution process of the motion 
equations with MATLAB. Set of 5 nonlinear ordinary differential equations is summed up in the 
Equation 12. 

 
        tnttt ,,qqfKqqBqM    (13) 

 



Constant average acceleration integration method was used due to its relative simplicity and numerical 
stability. This method is predictor-corrector based as the system in question is nonlinear. A road 
function was designed using modified sin functions to represent an obstacle which is supposed to 
cause a loss of contact between the tires and the road. In this way a jump of a motorcycle can be 
simulated. 
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Figure 3: Road profile 

Constant average acceleration method is based on an assumption that the acceleration is constant 
between two points in time (Equation 13). 

 

  ttt  qqq 
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By integration of the previous equation we obtain formulas for velocities and displacements. 
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Substituting Equations 14 and 15 into Equation 12 leads to: 

 

 tttt   fqZ
~

  (17) 

 

Therefore the acceleration in the next time step is calculated as: 

 

 tttt 


  fZq
~1  (18) 

 

Acceleration results are shown in the figures below. In Figure 4 there are acceleration results of 
the frame. The initial steep increase relates to the beginning of the obstacle. As the acceleration drops 
to approximately -10 ms-2  it means that the tires lost contact with surface. The peak values occur after 
landing reaching 36 ms-2. Acceleration results of front and rear assembly in Figure 5 can be explained 
in a similar way. 
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Figure 4: Frame acceleration results   Figure 5: Front and rear acceleration results 

The mathematical model that was developed provides reasonable results; however, further 
verification is necessary. In order to do so, ADAMS/VI-Motorcycle module was used to compare 
results. In Figure 6 there is a motorcycle model in VI-Motorcycle interface running over an obstacle 
defined in the same as in the MATLAB model. In Figure 7 there are acceleration results of front 
assembly in ADAMS and MATLAB. In this simulation tire damping properties were neglected in 
MATLAB which explains the key difference between both curves. 

 

 

Figure 6: VI-Motorcycle model Figure 7: Front assembly acceleration result comparison 

3 Experimental analysis 

A measurement system was designed in order to fulfill two purposes listed below by using 
inexpensive parts used in automotive applications. 

 
1) Measuring dynamics of a motorcycle in motion in order to verify computational model  
2) Evaluation of motorcycle vibrations effects on the rider by application of ČSN  ISO2631 

and ČSN EN ISO 5349 standards 

For data logging DL1 MK3datalogger was chosen. Advantages of this datalogger are the possibility of 
connecting up to 12 external sensors and the possibility of logging data from vehicle control unit. 

 



 

Figure 8: Datalogger DL1 MK3 [2] 

 

In order to obtain relationship between output voltage of accelerometers and values of acceleration a 
simple experiment was done. During this experiment each axis was exposed to positive and negative 
gravitational acceleration as well as to zero acceleration. By statistic evaluation of these three points a 
linear relation between output voltage and amount of acceleration was obtained.  

 

 

Figure 9: Output signal of two axis accelerometer 

 

3.1 Program N. 1 – Processing of the measured digital signals 

To simplify the processing of measured signals a GUI was created. Main purpose of this 
program is to convert measured signals from voltage to units of acceleration by using previously 
computed linear relation. The GUI also has functions aimed mainly at verifying function of sensors 
and evaluation of measured data.   

 

 

Figure 10: GUI and evaluation of measured data 



3.2 Program N. 2 – Evaluation of data by the methodic of ČSN ISO 2631 
standard 

This program is processing output data of program N. 1 by using ČSN ISO 2631 standard, 
aimed at effects on health and comfort. The outputs of this program are a frequency spectrum of every 
axis of accelerometers, summed up amount of vibrations (for comparing with limit amount ac), 
effective values of weighted vibrations ahw j and a controlling factor. Verification of this program was 
made by the following generated input signal: 

 
      tttx 1902sin1002sin502sin7,0    (19) 
 
   tnxy sizerand2  (20) 
 

 
Figure 11: Output of the FFT algorithm obtained by using generated input 

 

3.3 Program N. 3 – Evaluation of data by the methodic of ČSN EN ISO 5349 
standard 

This program is processing output data of program N. 1 by using ČSN EN ISO 5349 standard.  
Outputs of this program are effective values of weighted vibrations and total daily exposition to 
vibrations A(8). This evaluation process can be used only as a reference to compare different 
motorcycles. Precise evaluation is not relevant because the values recommended by this standard are 
not meant for motorcycles. 

 

 

Figure 12: Raw measured data in sw racetechnology Analysis 8.5 

 



4 Conclusion 

  The mathematical model of a motorcycle that was developed is in good agreement with 
commercial software VI-Motorcycle. Its outputs might be used for consequential FEM simulations. 
Further development of this model is planned in order to conduct three dimensional analyses.  

As far as experimental analysis is concerned, correct function of developed programs was tested 
on data obtained by measuring dynamics of the real motorcycle riding on public roads. Unfortunately, 
usage of this system is nowadays limited by insufficient sampling frequency of datalogger and low 
bandwidth of used accelerometers. Both issues are currently being solved. 
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