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Abstract 

The paper deals with the robust controller design using genetic algorithm for 
uncertain MIMO systems. The genetic algorithm is based on optimisation procedure, 
where the cost function to be minimized comprises the closed-loop simulation of the 
controlled MIMO process and evaluation of a selected performance index. Using this 
approach, the PID controller parameters were optimised to obtain the required 
behaviour of the controller process. Practical implementation and comparison of the 
proposed genetic method with conventional approaches (Small Gain Theory, 
Equivalent Subsystems Method) are verified and tested on a real process – two 
interconnected DC motors with varying parameters.  

1 Introduction 
Present trends in the design complex process control require an increasing degree of integration 

of numerical mathematics, control engineering methods, new control structures based on distribution, 
embedded network control structure and new information and communication technologies. 
Furthermore, increasing problems with interactions, process nonlinearities, operating constraints, time 
delays, uncertainties, and significant dead-times lead to the necessity to develop more sophisticated 
and robust control strategies. 

Main ideas covered in this paper are motivated by the development of new advanced robust 
control approaches and new possibilities of their controller structures implementation. 

For real MIMO plants, a controller design has to cope with the effect of uncertainties, which 
very often cause a poor performance or even instability of closed-loop systems. The reason for that is a 
perpetual time change of parameters (due to aging, influence of environment, working point changes 
etc.), as well as unmodelled dynamics. The former uncertainty type is denoted as a parametric 
uncertainty and the latter one a dynamic uncertainty. A controller guaranteeing closed-loop stability 
under both of these uncertainty types is a robust controller. Since many problems in robustness 
analysis and synthesis can be formulated as minimization of a cost function with respect to controller 
parameters, creative combinations of a variety of pre-existing control methodologies and the genetic 
approach will result in powerful tools that can address real engineering control problems. 

The paper presents genetic approaches to robust PID controller design for a laboratory plant 
consisting of two interconnected DC motors with varying parameters. The designed approach uses a 
genetic algorithm applied for the affine model. The genetic algorithm represents an optimization 
procedure, where the cost function to be minimized comprises the closed-loop simulation of the 
controlled process and a selected performance index evaluation [2]. Using this approach, the 
parameters of the PID controller were optimised in order to obtain the required behaviour of the 
controlled process [1, 8, 9]. Comparison of the proposed genetic method with conventional approaches 
(Small Gain Theory [11, 12], Equivalent Subsystems Method [7]) are verified and tested on a real 
process – two interconnected DC motors with varying parameters. 

2 Robust controller design  
2.1 Preliminaries  

Consider a MIMO system described by a transfer function matrix ( ) mmRsG ×∈ , and a diagonal 
controller ( ) mmRsR ×∈  in the standard feedback loop (Fig. 1), where w, u, y, e are vectors of reference, 
control, output and control error, respectively, of compatible dimensions. 
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Figure 1: Feedback loop under decentralized controller 

Let the uncertain plant model be given as a set of N transfer function matrices in N different 
operating points  

 ( ) ( ) Nk
A

B
sGsG

mm
k
ij

k
ijk

ij
k ,,2,1, K=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==

×

 (1) 

with ( ) ( )
( )

Nji
su
sysG k

j

k
ik

ij ,,2,1,, K== , where ( )syk
i  is the i-th output and ( )suk
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plant in the k-th experiment.  

Consider a MIMO system (1) and let the set of the l-th subsystem parameters of the controlled 
MIMO system be 

 { } { }1,021 ,...,,...,,...,, llrllrlplll aabbssss ==  (2) 

During the plant operation, the parameters ls  can vary within some uncertainty domain for each 
( )sGij  for the minimum and maximum possible values of the i-th subsystem parameter, respectively. 

Consider { } { }jjjjqjj DIPccc ,,,1 ..., ==  to be the set of designed j-th PID controller parameters, 
where mj ,...,1= . For N  different working points of the controlled process, defined by different 
vectors ls  which are to be controlled by the robust controller. 
 

2.2 Robust controller design for MIMO system using the Genetic Algorithm 
For this case, which is shown in Figure 1 and defined equations (1) and (2), consider the cost 

function in the additive form 
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comprising performance evaluation in all N  working points. It is also recommended to include the 
measured noise from the real system or other possible disturbances or expected situations in the 
simulation model.  

The controller design principle is actually an optimization task - search for such controller 
parameters from the defined parameter space which minimize the performance index. The cost 
function (fitness) is a mapping Rm.q→R, where m is the number of system inputs (number of 
controllers) and q is the number of designed controller parameters. The cost function can represent a 
sum of absolute control errors (SAE) in the following form:  
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where wj is reference variable, yj is controlled output, ej is control error, m  is number of system 
outputs and yN  is number of patterns. Fitness is represented by a cost function, or in the case of 
control by a modified cost function which can include e.g. penalized derivation of process output yj 
and/or derivation of control action uj. The modified cost function is in the following form: 
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where α, β are weight constants. 

Genetic algorithms are described in e.g. [2, 4, 6, 8, 9, 10] and others. Each chromosome 
represents a potential solution, which is a linear string of numbers, whose items (genes) represent in 
our case the designed controller parameters. Without loss of generality let us consider a PID controller 
with feedforward structure where jjj DIP ,,  are controller parameters of the j-th PID controller and t is 
time. 
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The searched PID controller parameters are P∈R+, I∈R+, D∈R+. In this case the chromosome 
representation can be in the form ch={P1,I1,D1, …, Pj,Ij,Dj,…, Pm,Im,Dm }. 

A general scheme of a GA has the following steps (Figure 2): 

1. Initialisation of the population of chromosomes (set of randomly generated chromosomes). 

2. Evaluation of the cost function (fitness) for all chromosomes. 

3. Selection of parent chromosomes. 

4. Crossover and mutation of the parents → children. 

5. Completion of the new population from the new children and selected members of the old 
population. Jump to the step 2. 

 
Figure 2: Block scheme of the used genetic algorithm 

A block scheme of a GA-based design is in Figure 3. Before each cost function evaluation, the 
corresponding chromosome (genotype) is decoded into controller parameters of the simulation model 
(phenotype) and after the simulation the performance index is evaluated. 



 
Figure 3: Block scheme of the GA-based controller design 

3 Case study 
3.1 The laboratory MIMO system of DC-motors 

The laboratory MIMO plant consisting of two DC-motors with interconnections between them 
across filters is shown in Figure 4.  

Mechanical interconnection is realized using inertia load and spring. Power supply, 
measurement of signals and motor control are supplied by motor electronics. In electronics, there is a 
RC component connected to the motor input to enable changing the time constant and the gain of the 
controlled system. System dynamics parameters can be tuned with a potentiometer. The measured 
voltage values of potentiometers are variables load z1 and z2. The motor load ranges within the interval 
0 – 10 [V]. The motor input variables u1 and u2 range within the interval 0 – 10 [V]. The controlled 
variables y1 and y2 are angular velocities sensed by optical electronic and transformed to the output 
voltage in the range 0 – 10 [V]. Interconnection of the controlled process with the computer, and the 
software LABREG for identification and control of the real plant [3] are realized through the 
Advantech data acquisition card of type PCI 1711. 
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Figure 4: The laboratory MIMO system and block scheme of DC motors 

3.2 Identification of DC-motors in working points 
The focus of this paper is on robust PID controller design to control speed in the selected area of 

the MIMO system specified by several working points. The identified models are used to design 
robust controllers and simulate the performance index in the genetic algorithm. Performance of the 
designed PID robust controllers is compared on the plant in several working points. To design robust 
controllers, identified models of MIMO system in three working points have been used. 

Consider the subsystem transfer functions of the MIMO plant (1) in the following form: 
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Consider the entries of the MIMO transfer function matrix obtained by identification in three 
various settings of the varying loads z1 and z2 (voltage in potentiometer) defining three working points: 

WP1: z1=1 [V], z2=1 [V] 



WP2: z1=5 [V], z2=5 [V]   

WP3: z1=9 [V], z2=9 [V] 

Coefficients of the individual transfer functions in Table 1 were obtained using genetic 
algorithm, where the criterion function was the sum of square errors between the outputs of the plant 
and the identified model. 

TABLE 1:  COEFFICIENTS OF TRANSFER FUNCTIONS OF DC MOTORS 

WP subsystem K a2 a1 Td 
G11 0.9812 0.3519 1.0469 0 
G22 0.8773 0.1653 0.8315 0 
G12 -0.1257 0.9999 1.4917 0.7 

WP1 

G21 0.1057 0.8499 1.2872 0.5 
G11 0.9054 1.0301 1.9773 0 
G22 0.7900 0.6699 1.7179 0 
G12 -0.0931 4.1600 3.2547 0.7 

WP2 

G21 0.09 3.1125 2.8531 1 
G11 0.8345 1.0712 2.6930 0 
G22 0.7110 0.5994 2.5119 0 
G12 -0.0681 0.1606 4.1404 1.4 

WP3 

G21 0.0657 9.4037 4.6146 1.5 

3.3 Robust controller design using Genetic algorithm 
A simulation scheme consisting of two PID controllers and the MIMO plant model in three 

working points was used. To evaluate the performance index (5) in all working points. Robust PID 
controllers have been designed by genetic algorithm for the MIMO system model according to Table 
1. Following controller parameter ranges have been selected 5;0=kP , 5;0=kI  and 5;0=kD . 
Optimal values of PID controller parameters obtained using GA in the user-defined search space are  
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For optimal relationship between performance criteria (overshoot, settling time), weights in the 
performance index (5) were adjusted to α=0, β=1. In Table 2, performance indices for the three 
considered methods (GA – Genetic Algorithm, SGT - Small Gain Theory, ESM - Equivalent 
Subsystems Method) in all working points are computed; for testing, boundary distribution of working 
points was used where the range of the varying load as 9;1=kz  has been selected. The sum of 
absolute control errors (SAE) according (4), average values of overshoot and settling time are 
compared as well [5].  

TABLE 2: PERFORMANCE INDICES FOR SELECTED METHODS 

Method Output SAE Average values of 
overshoot [%] 

Average values of 
settling time [s] 

GA y1 91.68 2.27 8.1 
 y2 82.75 4.36 8.6 

SGT y1 99.67 1.49 9.4 
 y2 89.85 2.69 9.8 

ESM y1 102.86 2.91 8.7 
 y2 101.85 5.17 10.6 
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Figure 5: Closed-loop step responses in WP1 

Closed-loop time responses of the reference and controlled variables for DC motors measured in 
the first working point (WP1) are depicted in Fig. 5, and control variables are depicted in Fig. 6. 
Details of time responses are depicted in Fig. 7. - 9. 
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Figure 6: Time responses of control variables in the WP1  
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Figure 7: Details of closed-loop step responses in the WP1  
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Figure 8: Details of closed-loop step responses in the WP2 
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Figure 9: Detail of closed-loop step responses in the WP3 

4 Conclusion 
Development of efficient robust controller design approach for MIMO plants is a significant and 

challenging task. In this paper, three robust decentralized control design methodologies are proposed 
and compared (SGT, EQS and GA). The presented methods guarantee robust stability and optimal 
setting of controller parameters. The results obtained by verification on the real plant consisting of 
interconnected DC motors with varying load show the effectiveness of the proposed methods. In the 
robust genetic controller design the weights in the performance index have physical meaning: they can 
be used to adjust performance parameters in terms of overshoot and settling time. Robustness of the 
designed decentralized controller is investigated with respect to both stability and performance. 
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