📣 MathWorks

Automated Visual Inspection with MATLAB

Paul Huxel, PhD

Senior Application Engineer, MathWorks

© 2022 The MathWorks, Inc.

What is Automated Visual Inspection?

"Automated optical inspection is the **image-based** or **visual inspection** of manufacturing parts where a camera scans the device under test for both **failures** and **quality defects**"

Automated Defect Detection Machine Vision Optical Inspection Automated Inspection

User Stories

Metrology Technology for Semiconductor Manufacturing

Film Production Inspection

Visual Inspection Use Cases

- Consumer Electronics and Wafer Inspection

Metrology

Image Credits: Review of Bumpless Build Cube (BBCube) Using Wafer-on-Wafer (WOW) and Chip-on-Wafer (COW) for Tera-Scale Three-Dimensional Integration (3DI)

mage Credits: Integrated wafer-scale manufacturing of

electron cryomicroscopy specimen supports

Image Credits: Thermal cycling effect on the crack formation of solder joint in ball grid array package

Typical Visual Inspection System

Inspection Cameras

limage Region Analyzer		0			(-)	σ×
EVPLORE .						
Load Image Load Image Load Image Load Image Attention Image	Choose Fuguri specifier *					
Analyte Regione	D.		Ø Region I	hoporties		
		0000	Area	 Ecoantricity 	Equi-Diameter	EulerNunt
	00.00		95	50 0.323	122,5600	1
	0.00	0.00000	11	01 0.368	120.3246	
				0.00	115,0040	
	B (* 00	0.000	10	0.265	117 000	-
		04.00	10	0.322	115.729	s
	00 t 4 in		10	64 0.301	115.0397	
	000	000 C	10	61 0.327	1 114.0564	
	00000		102	133 Q 566	114,144	
	0.4.00	.000	. 105	0.0279	E 114-1228	1
		0.00	1	50 0.265	tta gen	-
	. 000		100	0.296	111.029	-
	00004	* 00 JO		0.344	112.679	
	0000			61 0.337	112.0508	
	000	0000		78 0.228	111,5794	-
			5	74 0.309	111.5554	1
			97	17 0.299	111 2296	1
	5.0000	< 000		14 0.245	11120	-
	9000			0.1	110 560	-
	60600		9	0.255	110.4314	
			6	67 0.317	110.007	
			94	0.348	P 840 160/	1
	00.00	0 0 0	9	61 0.333	109.7548	1
	00.00			0.1 0.269	100,580	1
	0.000	(O) (O) (F (B)		0.214	100.040	-
					1. 196,004	
	0000					

Image Analysis

Defective Parts

Can you find the defective solder joint?

Defect Classification

Good

Defective

https://arxiv.org/abs/1901.08204

Counting, Presence and Localization of Objects

Defect Detection Workflow

Data Preparation

Data cleansing and preparation

 AI Modeling

Hardware

accelerated training

Interoperability

-D- System simulation

Simulation & Test

Integration with

complex systems

→ System verification→ and validation

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Defect Detection Workflow

Data Preparation

Data cleansing and preparation

Al Modeling

Hardware

complex systems

System simulation

× System verification
 ✓ and validation

Deployment

Enterprise systems

Edge, cloud desktop

11

Data Access and Preprocessing – Common Challenges

How do I preprocess data and get the right features?

How do I label my data faster?

What if I have an imbalanced dataset or don't have enough data?

Data Access and Preprocessing – Common Challenges

How do I preprocess data and get the right features?

Pre-processing Data – Color Thresholder App

Create mask by selecting polygon tool on point cloud and/or by adjusting the sliders...

Pre-processing Data – Region Analyzer App

📣 Image Region Analyzer								o ×
EXPLORE								
Load Image	Choose Properties - PROBETIES - SVEODT							-
Analyze Regions	PROPERTIES EXPORT			Q	Region Pro	operties		0
			他 日 </th <th></th> <th>Area 🗼</th> <th>Eccentricity</th> <th>EquivDiameter</th> <th>EulerNumb</th>		Area 🗼	Eccentricity	EquivDiameter	EulerNumb
	(a) (a) 🗠 (a)				11798	0.3234	122.5630)
					1137	0.3580	120.3246	;
					1112	0.3373	118.9945	
	🕝 🖓 👫 🎯				10900	0.2958	117.8062	2
		æ. ; ;	ð 🕾 🚯 🗿 🗌	Micualiza	1051	0.3223	115.7235	i
				visualize	10394	0.3016	115.0393	3
				regions by	1036	0.3270	114.8566)
		183. A.		regions by	10229	0.2794	114.1226	5
				property	1015	0.2952	113.6811	
					10142	0.2916	113.6362	2
	0000	34			9972	0.2903	112.6798	3
	0000				986	0.3371	112.0509)
		y 🐴 👘 🕴 🕴			9778	0.2262	111.5784	1
					9774	0.3036	111.5556	i
					9/1	0.2984	111.2298	1
			0		971	0.2480	111.1955	i
					960	0.3608	110.5639	
					957	0.2517	110.4314	
	6 S . S. C		(an 18 - a 🕞 🕜 🗌		956	0.3175	110.3679	
					946	0.3335	109.7548	3
					943	0.2898	109.5807	,
	O tor des 6				9390	0.3146	109.3422	2
					932	0.3527	108.9748	
								•

Pre-processing Data – Registration Estimator App

Apps Accelerate Workflow

Other Filtering and Enhancement Functions

Help Center

CONTENTS

« Documentation Home

- « Functions
- « Image Processing Toolbox

Category

Image Filtering and Enhancemen Image Filtering

Contrast Adjustment	18	ł
ROI-Based Processing	37	
Morphological Operations	31	
Deblurring	8	
Neighborhood and Block Processing	7	
Image Arithmetic	8	
Image Segmentation and Analysis	108	
Deep Learning for Image Processing	33	
3-D Volumetric Image	75	

146

40

54

28

1

26

Edge-Preserving Filtering imbilatfilt

imdiffuseest

imdiffusefilt

imguidedfilter

burstinterpolant

imnlmfilt

Texture Filtering

imgaborfilt

bwareafilt

bwpropfilt

integralImage integralImage3

integralBoxFilter

integralBoxFilter3

Filtering By Property Characteristics

Integral Image Domain Filtering

gabor

Extended Capability

C/C++ Code Generation
GPU Code Generation
Automatic Parallel Support
GPU Arrays

		Search Help			
	Documentation Examples Functions Apps Videos Answers				
	ordfilt2	2-D order-statistic filtering			
	stdfilt	Local standard deviation of image			
	rangefilt	Local range of image			
	entropyfilt	Local entropy of grayscale image			
	imboxfilt	2-D box filtering of images			
•	imboxfilt3	3-D box filtering of 3-D images			
	fibermetric	Enhance elongated or tubular structures in image using Frangi vesselness filte			
	maxhessiannorm	Maximum of Frobenius norm of Hessian of matrix			
	padarray	Pad array			

imgaborfilt(A,wavelength,orientatio

n)

Image Filtering and Enhancement Functions

Bilateral filtering of images with Gaussian kernels

Anisotropic diffusion filtering of images

Non-local means filtering of image

Create Gabor filter or Gabor filter bank

Apply Gabor filter or filter bank to 2-D image

Extract objects from binary image by size

Calculate 2-D integral image

Calculate 3-D integral image

2-D box filtering of integral images

3-D box filtering of 3-D integral images

Extract objects from binary image using properties

Guided filtering of images

Estimate parameters for anisotropic diffusion filtering

Create high-resolution image from set of low-resolution burst mode images

Data Access and Preprocessing – Common Challenges

How do I label my data faster?

How do I label my data?

How do I label my data?

imageLabeler

videoLabeler

groundTruthLabeler

blockedImage Labeler

signalLabeler

lidarLabeler

Data Access and Preprocessing – Common Challenges

What if I have an imbalanced dataset or don't have enough data?

Augmented Dataset

MathWorks[®]

N times as much data

Data augmentation allows building more complex and more robust models

Data Augmentation using Generative Adversarial Networks (GANs)

Images of digits generated from noise. File Exchange: Conditional GAN (Generative Adversarial Network) with MNIST

Defect Detection Workflow

Data Preparation

Pata cleansing an reparation

Human insigh

Simula

mulationenerated data

AI Modeling

Hardware accelerated training

→ System verification→ and validation

Simulation & Test

Integration with

complex systems

Deployment

Enterprise systems

Edge, cl desktop

Types of Defect Detection

Defect Classification

Example: Classify Defects on Wafer Maps Using Deep Learning

WM-811K Wafer Defect Map Data

summary(waferData.FailureType)

Center	4294
Donut	555
Edge-Loc	5189
Edge-Ring	9680
Loc	3593
Near-full	149
Random	866
Scratch	1193
none	147431

Convolutional Neural Networks (CNN)

Approach to find the defective units

	00000						
1-1-5-5-1		ele Mariel els Mariel els Mariel els Mariel els Mariel dans Mariel	なるので				
<u>86,000</u>		relate relate relate relate create arresto					
3334		EUROPEEURO EUROPEEURO EUROPEEURO EUROPEERE MEDICEE	00400 04400 04400 004400 40000				
			0.7900 0.7900 0.0400 0.0400 0.0400				
22	00000	10000	32433	00000	122222	00000	

Training the network with GPU

Evaluating Network Performance

	Center	91.7%	0.5%	0.1%	0.5%	0.8%		1.2%		5.3%
True Class	Donut	1.2%	82.5%	1.2%		11.4%		3.0%		0.6%
	Edge-Loc	0.4%		79.5%	12.1%	1.2%		1.6%	0.1%	5.1%
	Edge-Ring			0.2%	98.8%			0.1%		1.0%
	Loc	2.7%	0.7%	12.9%	0.6%	66.4%		1.7%	1.0%	14.0%
	Near-full	2.2%		2.2%			77.8%	17.8%		
	Random	0.4%	0.8%	1.2%	1.2%	1.9%		94.6%		
	Scratch	0.6%	0.3%	4.2%	2.0%	5.6%		0.3%	49.4%	37.7%
	none	0.2%		1.5%	1.4%	0.2%		0.1%	0.0%	96.6%
Center Donut Edge-Ring Loc Near-full Random Scratch n									none	

Test Data Confusion Matrix

Predicted Class

Anomaly Detection

Example: Detect Image Anomalies Using Explainable One-Class Classification Neural Network

Anomaly detection for an imbalanced dataset

- Use only good images at training. ٠
- Automatically sets optimal anomaly threshold ٠
- Predict images as good/bad at inference time ٠

Supported Anomaly Detection Method

- FCDD
- FastFlow •
- PatchCore
- PaDiM
- 1-class SVM

Computer Vision Toolbox Automated Visual Inspection Library 36

Anomaly Detection Using Fully Convolutional Data Description (FCDD)

- Quick-to-train, and requires very few anomalous samples
- Auto-generates a heatmap

📣 MathWorks

Approach to find the defective units

100 100 100 100 100 100 100 100							
	electronic series of a logic line of a logic l		10000000000000000000000000000000000000				
						Feature	One-cl
	Constantia Constantia Constantia Constantia Constantia Medital Co					vector	SVN
		02900 02900 02400 00400 30003					
147, 5448 147, 5448 147, 5448 147, 5448 147, 547 147, 547147, 547 147, 547147, 547 147, 547147, 547			009900 09900 09900 009900 00990 00990 00990				
199		報報		337.23			

-4

-3

-2

0

1

2

3

-1

wm811k: Wafer Anomaly Detection Using Fully Convolutional Data Description (FCDD)

Challenges with Deep Learning Models

Anomaly map helps to understand • why AI says it's a defect •

- Class Activation Mapping(CAM)
- **Grad-CAM**

Anomaly Map to Investigate Network Predictions

<complex-block>

Classified as "keyboard" due to the presence of the mouse

Cracks are highlighted in Anomaly detection

Computer Vision Toolbox Automated Visual Inspection Library

Counting, Presence and Localization of Objects

Object Detectors

Build, test, and deploy a deep learning solution that can detect objects in images and video

×

ALL B

Faster R-CNN

YOLO v2

YOLO v4

Instance Segmentation

Counting, Presence and Localization of Objects

(a) PCB with mouse bite.

Missing hole Mouse bite **Open circuit**

Spurious copper

Short

Spur

Fig. 11. An example of the training data for neural network. All the resolutions of the images are resized to 64×64 .

https://arxiv.org/abs/1901.08204

Which architecture to choose for Visual Inspection?

Defect Detection Workflow

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Deploy to Enterprise Infrastructure or Embedded Systems

AI models in MATLAB and Simulink can be deployed on enterprise systems or the cloud, or on embedded devices.

CLOUDERA

External Language Interfaces

Calling Libraries in Other Languages

C++ Libraries in MATLAB Directly call C++ library functionality from MATLAB

C Libraries in MATLAB Directly call C library functions from MATLAB

MEX File Functions Call C/C++ or Fortran MEX file functions from MATLAB

Java Libraries in MATLAB Access Java libraries from MATLAB

Calling Python from MATLAB Directly call Python functionality from MATLAB

.NET Libraries in MATLAB Access .NET libraries from MATLAB

COM Objects in MATLAB Access COM components from MATLAB

Calling Web Services

HTTP Interface Communicate with Web service from MATLAB using HTTP (Hypertext Transfer Protocol)

WSDL (Web Services Description Language)

Communicate with Web service from MATLAB using WSDL (Web Services Description Language)

Calling MATLAB from Other Languages

Defect Detection Workflow

Data Preparation

Data cleansing and preparation

Simulation-᠆ᡗᠵᠴ generated data **AI Modeling**

Hardware accelerated training

Interoperability

Simulation & Test

Integration with complex systems

→ System simulation

− × System verification ─✓ and validation

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Key Takeaways

- Interactive and easy to use apps help explore, iterate and automate workflows
- Flexibility and options to choose networks and optimizations based on data and requirements
- MATLAB provides an easy and extensible framework for visual inspection from data access to deployment

Visual Inspection Support package

Computer Vision Toolbox Automated Visual Inspection Library

- Anomaly detector
- Parameter optimization
- Visualization and evaluation tools
- Dedicated examples
 - Detect Image Anomalies Using Pretrained ResNet-18
 Feature Embeddings
 - <u>Classify Defects on Wafer Maps Using Deep Learning</u>
 - Detect Image Anomalies Using Explainable One-Class Classification Neural Network

Questions?

