

www.vzuplzen.cz

Employing Nonlinear Transformation of Datasets to Train Neural Networks

Luboš Smolík^{1,2}, Jan Rendl², Radek Bulín²

1 – Výzkumný a zkušební ústav v Plzni (Research and Testing Institute Plzen),

Diagnostics and Condition Monitoring Team

2 – University of West Bohemia, Faculty of Applied Sciences, NTIS Research Centre

Outline

- i. Introduction Nonlinear Transformations
- ii. Co-Simulation in Dynamical Systems
- iii. Application of Nonlinear Scaling
 - Hydrodynamic lubrication in journal bearings
 - Training
 - Results & Discussion
- iv. Conclusions

Section i.

Introduction

Why transform data?

- i. To normalize means and variances improving
 - comparability of different variables,
 - numerical stability, and
 - condition number,
- ii. To build nondimensional models,
- iii. To perform model order reduction,
- iv. To perform feature engineering, or
- v. To improve performance of classifiers.

Nonlinear data transformation

The most used nonlinear transformation is a decibel scale. It is commonly used in signal processing, communication and accoustics. For example, the **sound pressure level** is:

SPL = 20
$$\log_{10} \left(\frac{p}{2 \cdot 10^{-5}} \right)$$

	Noise level in dB	Common Environment		Your conversation would be
20 Pa	120	—Jet engine nearby	-	
	110	— Police siren nearby	- <u>`</u>	IMPOSSIBLE
2 Pa	100	— Inside subway train	ĥ	
	90	— Using hair drier		
0,2 Pa	80	—Truck passing by	q i	LOUD VOICE
	70	— Street with car traffic		REQUIRED
0,02 Pa	60	—Normal conversations at office	.ي. لايت	
	50	— Moderate rainfall	Φ	
2 mPa	40	—Quiet residential area		EASY
	30	— Whispering	33	
0,2 mPa	20	—Rustling leaves	"	
	10	— Breathing		

Nonlinear data transformation

The most used nonlinear transformation is a decibel scale. It is commonly used in signal processing, communication and accoustics. For example, the **sound pressure level** is:

SPL = 20
$$\log_{10} \left(\frac{p}{2 \cdot 10^{-5}} \right)$$

This transformation cannot transform negative numbers, so we propose the following:

$$x_{\log} = \text{sgn}(x) \, \log_{10}(|x| + 1)$$

Technical Computing Prague | 11. 4. 2024

Briefly on cosimulation

Cosimulation is the joint simulation of loosely coupled subsimulators.

Subsimulators are **independent**. However, each subsimulator may require **outputs** from other subsimulators as its **input**.

Fig.: Drive train of a combustion engine with hydrodynamic bearings (courtesy of AVL List GmBH)

Cosimulation workflow in multibody systems interacting with fluid

Techniques that can reduce the computational effort

Hydrodynamic lubrication in journal bearings

Pressure in thin viscous incompressible film and laminar flow:

$$\frac{\partial}{\partial s} \left(\frac{h^3}{\mu} \frac{\partial p}{\partial s} \right) + \frac{\partial}{\partial x} \left(\frac{h^3}{\mu} \frac{\partial p}{\partial x} \right) = 6 \frac{\partial (\omega r h)}{\partial s} + 12 \frac{\partial h}{\partial t}$$

Hydrodynamic forces acting on the journal:

$$F^{\text{rad}} = -\iint p \cos\left(\frac{s}{r} - \phi\right) ds dx$$
$$F^{\text{tan}} = -\iint p \sin\left(\frac{s}{r} - \phi\right) ds dx$$

Application – Nondimensionalisation of problem

Displacements $y, z \rightarrow$ relative eccentricity attitude angle

Time t

Velocities $\dot{y}, \dot{z} \rightarrow derivative of eccentricity$ derivative of angle

 \rightarrow nondimensional time

Forces F^{rad}, F^{tan} \rightarrow nondimensional force

$$\varepsilon = \frac{\sqrt{y^2 + z^2}}{c_r}$$

$$\phi = \operatorname{atan}\left(\frac{z}{y}\right), \forall y > 0, \forall z \ge 0$$

$$\tau = \omega t$$

$$\frac{d\varepsilon}{d\tau} = \dot{\varepsilon} = \frac{y \dot{y} + z \dot{z}}{\omega c_r \sqrt{y^2 + z^2}}$$

$$\frac{d\phi}{d\tau} = \dot{\phi} = \frac{y \dot{z} - z \dot{y}}{\omega (y^2 + z^2)}$$

$$F_{\text{non}}^i = \frac{c_r^2}{\omega \mu r l^3} F^i = \Lambda F^i$$

This ensures that $f: \left(\varepsilon, \phi, \dot{\varepsilon}, \dot{\phi}\right) \to \left(F_{\text{non}}^{\text{rad}}, F_{\text{non}}^{\text{tan}}\right)$ holds for any bearing with given $\eta = \frac{L}{2R}$

Application – Architecture of an artificial neural network

Universal approximation theorem: Any continuous function can be approximated using a sum of sigmoid activation functions [i.e. by FFNN].

The ideal number of hidden layers, neurons and their allocation depends on characteristics of the approximated and activation functions.

Hornik et al. (1989): With any nonconstant activation function, a one-hidden-layer pisigma network [i.e. fully-connected NN] is a universal approximator [of one output].

Reference: Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. *Neural Networks*. 1989, 2(5): 359–366. doi: 10.1016/0893-6080(89)90020-8

Application – Proposed Architecture of a FFNN

Fig.: Proposed FFNN with two hidden layers; note that for symmetrical bearings the input can be simplified

Technical Computing Prague | 11. 4. 2024

Inputs:

eccentricity and velocities

Outputs:

forces (pressure bypassed)

Transfer function (node *i*, layer *k*):

16

Application – Train data

Train data: database of force vectors in grid of 51×51×51 configuration points

Validation & test data: database of force vectors in 4500 & 30000 random conf. points

Target error: MSE = 0.000001 (better performance than MSE = 0!)

Training method: Bayesian regularisation-backpropagation

Fig.: Representation of train data

Fig.: Representation of validation & test data

Results – Performance evaluation

Performance is evaluated using data that are **unknown to ANN**, i.e. that were not used during the training.

Metrics:i) Root-mean-square errorii) Coefficient of determination $RMSE_{met}^{i} = \sqrt{\frac{1}{n}\sum_{j=1}^{n}(F_{met,j}^{i} - F_{non,j}^{i})^{2}}$ $(R^{2})_{met}^{i} = 1 - \frac{\sum_{j=1}^{n}(F_{non,j}^{i} - F_{met,j}^{i})^{2}}{\sum_{j=1}^{n}[F_{non,j}^{i} - mean(F_{non,j}^{i})]^{2}}$ $i = \{rad, tan\}$
met = $\{std, log\}$ Note that performance metrics use nondimensional forces - need for reverse transformation! $F_{pred}^{i} = \frac{F_{non}^{i} - mean(F_{non}^{i})}{std(F_{non}^{i})}$ $F_{pred}^{i} = \frac{F_{non}^{i} - mean(F_{non}^{i})}{std(F_{non}^{i})}$ $F_{pred}^{i} = sgn(F_{non}^{i}) \cdot log_{10}(F_{non}^{i} + 1)$

Results – Training 10.0 6.8 21.4 14.4 4 std 3.5 log 3 Train time (h) 5.7 (h) 1.5 1 0.5 0 50 70 20-20 20-30 10-10-10 15-15-15 20-20-20 25-25-25 30-30-30 35-35-35 20 30 40 60 80 30-20 30-30 10 Number of nodes 3000 std Effective parameters (-) 2500 2000 parameters (-) 2000 1500 500 log 2000 1500 1000 500 0 20 30 40 50 60 20-20 20-30 10 70 80 30-20 30-30 10-10-10 15-15-15 20-20-20 25-25-25 30-30-30 35-35-35 Technical Computing Prague | 11. 4. 2024 21 Number of nodes

Results – RMSE

Results – Coefficients of determination

Coefficients of determination (R²) are not sensitive enough to measure the

performance of ANNs that have high accuracy.

Results – Relative errors of FFNNs with 1 and 2 layers

Results – Relative errors of FFNNs with 3 layers

Fig: Relative errors of ANN with log scaled data are lower than those of ANN with z-scored data, although the RMSE values suggest the Technical Computing Prague | 11. 4. 2024 opposite!

Summary

- i. RMSE and R² are not always the best metrics to evaluate the performance.
- ii. RMSE and MSE depend on data scaling do not use them to compare differently scaled models!
- iii. Nonlinear transformation of train data (targets) can improve the distribution of prediction relative errors similar relative errors over different orders of magnitude.
- iv. One can use weights in a cost function instead of data transformation. With the uniform weights, the data transformation requires less flops (i.e. CPU time).

CPU time (assuming single CPU)

Standard approach:	assembling model	several seconds		
	1000 evaluations of forces:	4.82 s at 91×21 mesh		
		8.48 s at 151×21 mesh		
ANN:	database construction:	639.4 s at 91×21 mesh		
		1124 s at 151×21 mesh		
	training:	1.7 h (30-30-30 and 35-35-35 ANNs)		
	1000 evaluations of forces:	0.012 s		

Questions regarding CPU time

Is the database construction and training of ANN justifiable?

Which approach (standard that solves partial differential equation directly or ANN) is more efficient in which situation?

Na jedné vlně

This presentation was supported by the institutional support for long-term conceptual development of research institutions provided by the Ministry of Industry and Trade of the Czech Republic to VZÚ Plzeň.

Luboš Smolíksmolik@vzuplzen.czJan Rendlrendlj@ntis.zcu.czRadek Bulínrbulin@ntis.zcu.cz

Výzkumný a zkušební ústav Plzeň s.r.o. Tylova 1581/46, 301 00 Plzeň Tel.: +420 371 430 700 E-mail: <u>obchod@vzuplzen.cz</u> www.vzuplzen.cz